TruSeq® Stranded mRNA Sample Preparation Guide
This document and its contents are proprietary to Illumina, Inc. and its affiliates ("Illumina"), and are intended solely for the contractual use of its customer in connection with the use of the product(s) described herein and for no other purpose. This document and its contents shall not be used or distributed for any other purpose and/or otherwise communicated, disclosed, or reproduced in any way whatsoever without the prior written consent of Illumina. Illumina does not convey any license under its patent, trademark, copyright, or common-law rights nor similar rights of any third parties by this document.

The instructions in this document must be strictly and explicitly followed by qualified and properly trained personnel in order to ensure the proper and safe use of the product(s) described herein. All of the contents of this document must be fully read and understood prior to using such product(s).

FAILURE TO COMPLETELY READ AND EXPLICITLY FOLLOW ALL OF THE INSTRUCTIONS CONTAINED HEREIN MAY RESULT IN DAMAGE TO THE PRODUCT(S), INJURY TO PERSONS, INCLUDING TO USERS OR OTHERS, AND DAMAGE TO OTHER PROPERTY.

ILLUMINA DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE IMPROPER USE OF THE PRODUCT(S) DESCRIBED HEREIN (INCLUDING PARTS THEREOF OR SOFTWARE) OR ANY USE OF SUCH PRODUCT(S) OUTSIDE THE SCOPE OF THE EXPRESS WRITTEN LICENSES OR PERMISSIONS GRANTED BY ILLUMINA IN CONNECTION WITH CUSTOMER'S ACQUISITION OF SUCH PRODUCT(S).

FOR RESEARCH USE ONLY

© 2012–2013 Illumina, Inc. All rights reserved.

Illumina, IlluminaDx, BaseSpace, BeadArray, BeadXpress, cBot, CSPro, DASL, DesignStudio, Eco, GAIIx, Genetic Energy, Genome Analyzer, GenomeStudio, GoldenGate, HiScan, HiSeq, Infinium, iSelect, MiSeq, Nextera, NuPCR, SeqMonitor, Solexa, TruSeq, TruSight, VeraCode, the pumpkin orange color, and the Genetic Energy streaming bases design are trademarks or registered trademarks of Illumina, Inc. All other brands and names contained herein are the property of their respective owners.

Limited Use Label License: This product and its use are the subject of one or more issued and/or pending U.S. and foreign patent applications owned by Max Planck Gesellschaft, exclusively licensed to New England Biolabs, Inc. and sublicensed to Illumina, Inc. The purchase of this product from Illumina, Inc., its affiliates, or its authorized resellers and distributors conveys to the buyer the non-transferable right to use the purchased amount of the product and components of the product by the buyer (whether the buyer is an academic or for profit entity). The purchase of this product does not convey a license under any claims in the foregoing patents or patent applications directed to producing the product. The buyer cannot sell or otherwise transfer this product or its components to a third party or otherwise use this product for the following COMMERCIAL PURPOSES: (1) use of the product or its components in manufacturing; or (2) use of the product or its components for therapeutic or prophylactic purposes in humans or animals.

Read Before Using this Product

This Product, and its use and disposition, is subject to the following terms and conditions. If Purchaser does not agree to these terms and conditions then Purchaser is not authorized by Illumina to use this Product and Purchaser must not use this Product.

1 Definitions. "Application Specific IP" means Illumina owned or controlled intellectual property rights that pertain to this Product (and use thereof) only with regard to specific field(s) or specific application(s). Application Specific IP excludes all Illumina owned or controlled intellectual property that cover aspects or features of this Product (or use thereof) that are common to this Product in all possible applications and all possible fields of use (the "Core IP"). Application Specific IP and Core IP are separate, non-overlapping, subsets of all Illumina owned or controlled intellectual property. By way of non-limiting example, Illumina intellectual property rights for specific diagnostic methods, for specific forensic methods, or for specific nucleic acid biomarkers, sequences, or combinations of biomarkers or sequences are examples of Application Specific IP. "Consumable(s)" means Illumina branded reagents and consumable items that are intended by Illumina for use with, and are to be consumed through the use of, Hardware. "Documentation" means Illumina's user manual for this Product, including without limitation, package inserts, and any
other documentation that accompany this Product or that are referenced by the Product or in the packaging for the Product in effect on the date of shipment from Illumina. Documentation includes this document. "Hardware" means Illumina branded instruments, accessories or peripherals. "Illumina" means Illumina, Inc. or an Illumina affiliate, as applicable. "Product" means the product that this document accompanies (e.g., Hardware, Consumables, or Software). "Purchaser" is the person or entity that rightfully and legally acquires this Product from Illumina or an Illumina authorized dealer. "Software" means Illumina branded software (e.g., Hardware operating software, data analysis software). All Software is licensed and not sold and may be subject to additional terms found in the Software's end user license agreement. "Specifications" means Illumina's written specifications for this Product in effect on the date that the Product ships from Illumina.

2 Research Use Only Rights. Subject to these terms and conditions and unless otherwise agreed upon in writing by an officer of Illumina, Purchaser is granted only a non-exclusive, non-transferable, personal, non-sublicensable right under Illumina's Core IP, in existence on the date that this Product ships from Illumina, solely to use this Product in Purchaser's facility for Purchaser's internal research purposes (which includes research services provided to third parties) and solely in accordance with this Product's Documentation, but specifically excluding any use that (a) would require rights or a license from Illumina to Application Specific IP, (b) is a re-use of a previously used Consumable, (c) is the disassembling, reverse-engineering, reverse-compiling, or reverse-assembling of this Product, (d) is the separation, extraction, or isolation of components of this Product or other unauthorized analysis of this Product, (e) gains access to or determines the methods of operation of this Product, (f) is the use of non-Illumina reagent/consumables with Illumina's Hardware (does not apply if the Specifications or Documentation state otherwise), or (g) is the transfer to a third-party of, or sublicensing of, Software or any third-party software. All Software, whether provided separately, installed on, or embedded in a Product, is licensed to Purchaser and not sold. Except as expressly stated in this Section, no right or license under any of Illumina's intellectual property rights is or are granted expressly, by implication, or by estoppel.

Purchaser is solely responsible for determining whether Purchaser has all intellectual property rights that are necessary for Purchaser's intended uses of this Product, including without limitation, any rights from third parties or rights to Application Specific IP. Illumina makes no guarantee or warranty that purchaser's specific intended uses will not infringe the intellectual property rights of a third party or Application Specific IP.

3 Regulatory. This Product has not been approved, cleared, or licensed by the United States Food and Drug Administration or any other regulatory entity whether foreign or domestic for any specific intended use, whether research, commercial, diagnostic, or otherwise. This Product is labeled For Research Use Only. Purchaser must ensure it has any regulatory approvals that are necessary for Purchaser's intended uses of this Product.

4 Unauthorized Uses. Purchaser agrees: (a) to use each Consumable only one time, and (b) to use only Illumina consumables/reagents with Illumina Hardware. The limitations in (a)-(b) do not apply if the Documentation or Specifications for this Product state otherwise. Purchaser agrees not to, nor authorize any third party to, engage in any of the following activities: (i) disassemble, reverse-engineer, reverse-compile, or reverse-assemble the Product, (ii) separate, extract, or isolate components of this Product or subject this Product or components thereof to any analysis not expressly authorized in this Product's Documentation, (iii) gain access to or attempt to determine the methods of operation of this Product, or (iv) transfer to a third-party, or grant a sublicense, to any Software or any third-party software. Purchaser further agrees that the contents of and methods of operation of this Product are proprietary to Illumina and this Product contains or embodies trade secrets of Illumina. The conditions and restrictions found in these terms and conditions are bargained for conditions of sale and therefore control the sale of and use of this Product by Purchaser.

5 Limited Liability. TO THE EXTENT PERMITTED BY LAW, IN NO EVENT SHALL ILLUMINA OR ITS SUPPLIERS BE LIABLE TO PURCHASER OR ANY THIRD PARTY FOR COSTS OF PROCUREMENT OF SUBSTITUTE PRODUCTS OR SERVICES, LOST PROFITS, DATA OR BUSINESS, OR FOR ANY INDIRECT, SPECIAL, INCIDENTAL, EXEMPLARY, CONSEQUENTIAL, OR PUNITIVE DAMAGES OF ANY KIND ARISING OUT OF OR IN CONNECTION WITH, WITHOUT LIMITATION, THE SALE OF THIS PRODUCT, ITS USE, ILLUMINA'S PERFORMANCE HEREUNDER OR ANY OF THESE TERMS AND CONDITIONS, HOWEVER
ARISING OR CAUSED AND ON ANY THEORY OF LIABILITY (WHETHER IN CONTRACT, TORT (INCLUDING NEGLIGENCE), STRICT LIABILITY OR OTHERWISE).

6 ILLUMINA’S TOTAL AND CUMULATIVE LIABILITY TO PURCHASER OR ANY THIRD PARTY ARISING OUT OF OR IN CONNECTION WITH THESE TERMS AND CONDITIONS, INCLUDING WITHOUT LIMITATION, THIS PRODUCT (INCLUDING USE THEREOF) AND ILLUMINA’S PERFORMANCE HEREUNDER, WHETHER IN CONTRACT, TORT (INCLUDING NEGLIGENCE), STRICT LIABILITY OR OTHERWISE, SHALL IN NO EVENT EXCEED THE AMOUNT PAID TO ILLUMINA FOR THIS PRODUCT.

7 Limitations on Illumina Provided Warranties. TO THE EXTENT PERMITTED BY LAW AND SUBJECT TO THE EXPRESS PRODUCT WARRANTY MADE HEREIN ILLUMINA MAKES NO (AND EXPRESSLY DISCLAIMS ALL) WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, WITH RESPECT TO THIS PRODUCT, INCLUDING WITHOUT LIMITATION, ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, NONINFRINGEMENT, OR ARISING FROM COURSE OF PERFORMANCE, DEALING, USAGE OR TRADE. WITHOUT LIMITING THE GENERALITY OF THE FOREGOING, ILLUMINA MAKES NO CLAIM, REPRESENTATION, OR WARRANTY OF ANY KIND AS TO THE UTILITY OF THIS PRODUCT FOR PURCHASER’S INTENDED USES.

8 Product Warranty. All warranties are personal to the Purchaser and may not be transferred or assigned to a third-party, including an affiliate of Purchaser. All warranties are facility specific and do not transfer if the Product is moved to another facility of Purchaser, unless Illumina conducts such move.

a Warranty for Consumables. Illumina warrants that Consumables, other than custom Consumables, will conform to their Specifications until the later of (i) 3 months from the date of shipment from Illumina, and (ii) any expiration date or the end of the shelf-life pre-printed on such Consumable by Illumina, but in no event later than 12 months from the date of shipment. With respect to custom Consumables (i.e., Consumables made to specifications or designs made by Purchaser or provided to Illumina by, or on behalf of, Purchaser), Illumina only warrants that the custom Consumables will be made and tested in accordance with Illumina’s standard manufacturing and quality control processes. Illumina makes no warranty that custom Consumables will work as intended by Purchaser or for Purchaser’s intended uses.

b Warranty for Hardware. Illumina warrants that Hardware, other than Upgraded Components, will conform to its Specifications for a period of 12 months after its shipment date from Illumina unless the Hardware includes Illumina provided installation in which case the warranty period begins on the date of installation or 30 days after the date it was delivered, whichever occurs first ("Base Hardware Warranty"). "Upgraded Components" means Illumina provided components, modifications, or enhancements to Hardware that was previously acquired by Purchaser. Illumina warrants that Upgraded Components will conform to their Specifications for a period of 90 days from the date the Upgraded Components are installed. Upgraded Components do not extend the warranty for the Hardware unless the upgrade was conducted by Illumina at Illumina’s facilities in which case the upgraded Hardware shipped to Purchaser comes with a Base Hardware Warranty.

c Exclusions from Warranty Coverage. The foregoing warranties do not apply to the extent a non-conformance is due to (i) abuse, misuse, neglect, negligence, accident, improper storage, or use contrary to the Documentation or Specifications, (ii) improper handling, installation, maintenance, or repair (other than if performed by Illumina’s personnel), (iii) unauthorized alterations, (iv) Force Majeure events, or (v) use with a third party’s good not provided by Illumina (unless the Product’s Documentation or Specifications expressly state such third party’s good is for use with the Product).

d Procedure for Warranty Coverage. In order to be eligible for repair or replacement under this warranty Purchaser must (i) promptly contact Illumina’s support department to report the non-conformance, (ii) cooperate with Illumina in confirming or diagnosing the non-conformance, and (iii) return this Product, transportation charges prepaid to Illumina following Illumina’s instructions or, if agreed by Illumina and Purchaser, grant Illumina’s authorized repair personnel access to this Product in order to confirm the non-conformance and make repairs.
e **Sole Remedy under Warranty.** Illumina will, at its option, repair or replace non-conforming Product that it confirms is covered by this warranty. Repaired or replaced Consumables come with a 30-day warranty. Hardware may be repaired or replaced with functionally equivalent, reconditioned, or new Hardware or components (if only a component of Hardware is non-conforming). If the Hardware is replaced in its entirety, the warranty period for the replacement is 90 days from the date of shipment or the remaining period on the original Hardware warranty, whichever is shorter. If only a component is being repaired or replaced, the warranty period for such component is 90 days from the date of shipment or the remaining period on the original Hardware warranty, whichever ends later. The preceding states Purchaser’s sole remedy and Illumina’s sole obligations under the warranty provided hereunder.

f **Third-Party Goods and Warranty.** Illumina has no warranty obligations with respect to any goods originating from a third party and supplied to Purchaser hereunder. Third-party goods are those that are labeled or branded with a third-party’s name. The warranty for third-party goods, if any, is provided by the original manufacturer. Upon written request Illumina will attempt to pass through any such warranty to Purchaser.

9 **Indemnification.**

a **Infringement Indemnification by Illumina.** Subject to these terms and conditions, including without limitation, the Exclusions to Illumina’s Indemnification Obligations (Section 9(b) below), the Conditions to Indemnification Obligations (Section 9(d) below), Illumina shall (i) defend, indemnify and hold harmless Purchaser against any third-party claim or action alleging that this Product when used for research use purposes, in accordance with these terms and conditions, and in accordance with this Product's Documentation and Specifications infringes the valid and enforceable intellectual property rights of a third party, and (ii) pay all settlements entered into, and all final judgments and costs (including reasonable attorneys’ fees) awarded against Purchaser in connection with such infringement claim. If this Product or any part thereof, becomes, or in Illumina’s opinion may become, the subject of an infringement claim, Illumina shall have the right, at its option, to (A) procure for Purchaser the right to continue using this Product, (B) modify or replace this Product with a substantially equivalent non-infringing substitute, or (C) require the return of this Product and terminate the rights, license, and any other permissions provided to Purchaser with respect to this Product and refund to Purchaser the depreciated value (as shown in Purchaser’s official records) of the returned Product at the time of such return; provided that, no refund will be given for used-up or expired Consumables. This Section states the entire liability of Illumina for any infringement of third party intellectual property rights.

b **Exclusions to Illumina Indemnification Obligations.** Illumina has no obligation to defend, indemnify or hold harmless Purchaser for any Illumina Infringement Claim to the extent such infringement arises from: (i) the use of this Product in any manner or for any purpose outside the scope of research use purposes, (ii) the use of this Product in any manner not in accordance with its Specifications, its Documentation, the rights expressly granted to Purchaser hereunder, or any breach by Purchaser of these terms and conditions, (iii) the use of this Product in combination with any other products, materials, or services not supplied by Illumina, (iv) the use of this Product to perform any assay or other process not supplied by Illumina, or (v) Illumina’s compliance with specifications or instructions for this Product furnished by, or on behalf of, Purchaser (each of (i) – (v), is referred to as an “Excluded Claim”).

c **Indemnification by Purchaser.** Purchaser shall defend, indemnify and hold harmless Illumina, its affiliates, their non-affiliate collaborators and development partners that contributed to the development of this Product, and their respective officers, directors, representatives and employees against any claims, liabilities, damages, fines, penalties, causes of action, and losses of any and every kind, including without limitation, personal injury or death claims, and infringement of a third party’s intellectual property rights, resulting from, relating to, or arising out of (i) Purchaser's breach of any of these terms and conditions, (ii) Purchaser's use of this Product outside of the scope of research use purposes, (iii) any use of this Product not in accordance with this Product's Specifications or Documentation, or (iv) any Excluded Claim.

d **Conditions to Indemnification Obligations.** The parties’ indemnification obligations are conditioned upon the party seeking indemnification (i) promptly notifying the other party in writing of such claim or action, (ii) giving the other party exclusive control and authority over the defense and settlement of such claim or action, (iii) not admitting
infringement of any intellectual property right without prior written consent of the other party, (iv) not entering into any settlement or compromise of any such claim or action without the other party’s prior written consent, and (v) providing reasonable assistance to the other party in the defense of the claim or action; provided that, the party reimburses the indemnified party for its reasonable out-of-pocket expenses incurred in providing such assistance.

e **Third-Party Goods and Indemnification.** Illumina has no indemnification obligations with respect to any goods originating from a third party and supplied to Purchaser. Third-party goods are those that are labeled or branded with a third-party's name. Purchaser's indemnification rights, if any, with respect to third party goods shall be pursuant to the original manufacturer's or licensor's indemnity. Upon written request Illumina will attempt to pass through such indemnity, if any, to Purchaser.
Revision History

<table>
<thead>
<tr>
<th>Part #</th>
<th>Revision</th>
<th>Date</th>
<th>Description of Change</th>
</tr>
</thead>
<tbody>
<tr>
<td>15031047</td>
<td>E</td>
<td>October 2013</td>
<td>• Corrected Kit Contents box 1 shipping temperature</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Corrected the RNA Purification Beads part number in Box 1 of the LT kit</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Added bioanalyzer and DNA 1000 Kit to equipment list</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Clarified PDP plate type:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• LS protocol — 0.3 ml PCR plate when pooling ≤ 40 samples or 96-well MIDI plate when pooling > 40 samples</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• HS protocol — HSP plate</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• In the Alternate Fragmentation Protocols Appendix, clarified instructions for samples requiring 0 minutes fragmentation time</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Created new appendix of Supporting Information containing Acronyms, Kit Contents, Consumables and Equipment, and Indexed Adapter Sequences</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Replaced Best Practices section with a reference to content on the Illumina website</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Replaced Adapter Options and Pooling Guidelines sections with a reference to the TruSeq Sample Preparation Pooling Guide (part # 15042173)</td>
</tr>
<tr>
<td>15031047</td>
<td>D</td>
<td>September 2012</td>
<td>• Added New England Biolabs, Inc. licensing to notices</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Clarified that when starting with previously isolated mRNA, begin the protocol at the Incubate RFP procedures</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Corrected PCR Primer Cocktail part number in LT Kit Contents</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Corrected kit name with 96 Sample, cDNA Synthesis-PCR Box</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Reformatted the consumables list at the start of each procedure to a table</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• After initial thaw, for each process that uses Resuspension Buffer, added a preparation step to remove it from 2°C to 8°C storage</td>
</tr>
<tr>
<td>Part #</td>
<td>Revision</td>
<td>Date</td>
<td>Description of Change</td>
</tr>
<tr>
<td>---------</td>
<td>----------</td>
<td>----------</td>
<td>---</td>
</tr>
</tbody>
</table>
| 15031047| C | July 2012 | • Added TruSeq Stranded mRNA HT Sample Prep Kit content and functionality to the following sections:
 • Usage Guidelines
 • Kit Contents
 • Indexed Adapter Sequences
 • Adapter Options
 • Pooling Guidelines
 • Ligate Adapters procedures
 • Enrich DNA Fragments procedures
 • Normalize and Pool Libraries procedures
 • Added reagent volume table to Usage Guidelines
 • Revised Tracking Tools documentation download information
 • Removed detailed Sample Sheet description from Tracking Tools
 • Added instructions for which assay to select when using the Illumina Experiment Manager
 • Corrected storage temperature for Bead Binding Buffer, Bead Washing Buffer, and Elution Buffer as 2°C to 8°C
 • Specified storage temperature for Resuspension Buffer at 2°C to 8°C after initial thaw
 • Appendix A - Alternate Fragmentation Protocol - clarified footnote
 • TruSeq Stranded mRNA LT Sample Prep Kit only
 • Make RFP - added step to centrifuge BBB before adding to samples |
| 15031047| B | April 2012|
| 15031047| A | April 2012| Initial Release |
Table of Contents

Revision History ... vii
Table of Contents ... ix
List of Tables ... xi

Chapter 1 Overview ... 1
- Introduction ... 2
- Protocol Features .. 3
- RNA Input Recommendations ... 5
- In-Line Control DNA ... 7
- Additional Resources .. 9

Chapter 2 Low Sample (LS) Protocol ... 11
- Introduction ... 12
- Sample Prep Workflow ... 14
- Purify and Fragment mRNA .. 15
- Synthesize First Strand cDNA ... 21
- Synthesize Second Strand cDNA .. 24
- Adenylate 3’ Ends ... 28
- Ligate Adapters .. 31
- Enrich DNA Fragments ... 38
- Validate Library .. 42
- Normalize and Pool Libraries .. 44

Chapter 3 High Sample (HS) Protocol ... 47
- Introduction ... 48
- Sample Prep Workflow ... 50
- Purify and Fragment mRNA .. 51
- Synthesize First Strand cDNA ... 58
- Synthesize Second Strand cDNA .. 61
- Adenylate 3’ Ends ... 65
- Ligate Adapters .. 68
- Enrich DNA Fragments ... 76
- Validate Library .. 81
- Normalize and Pool Libraries .. 83

Appendix A Supporting Information ... 87
List of Tables

Table 1 Protocol Features .. 3
Table 2 Kit and Sample Number Recommendations .. 3
Table 3 Kit and Protocol Recommendations .. 4
Table 4 In-Line Control Functions .. 8
Table 5 Kit and Sample Number Recommendations .. 12
Table 6 Kit and Protocol Recommendations ... 12
Table 7 Kit and Sample Number Recommendations .. 48
Table 8 Kit and Protocol Recommendations ... 48
Table 10 TruSeq Stranded mRNA Sample Preparation Acronyms ... 89
Table 11 TruSeq Stranded mRNA Sample Preparation Kits .. 91
Table 12 User-Supplied Consumables ... 100
Table 13 User-Supplied Consumables - Additional Items for LS Processing 101
Table 14 User-Supplied Consumables - Additional Items for HS Processing 101
Table 15 User-Supplied Equipment .. 102
Table 16 User-Supplied Equipment - Additional Items for HS Processing ... 102
Table 17 TruSeq Stranded mRNA LT Sample Prep Kit Set A Indexed Adapter Sequences 104
Table 18 TruSeq Stranded mRNA LT Sample Prep Kit Set B Indexed Adapter Sequences 104
Table 19 TruSeq Stranded mRNA HT Sample Prep Kit Indexed Adapter 1 Sequences 105
Table 20 TruSeq Stranded mRNA HT Sample Prep Kit Indexed Adapter 2 Sequences 105
Table 22 Library Insert Fragmentation Time ... 109
Table 23 Illumina General Contact Information .. 113
Table 24 Illumina Customer Support Telephone Numbers .. 113
Overview

Introduction ... 2
Protocol Features .. 3
RNA Input Recommendations ... 5
In-Line Control DNA .. 7
Additional Resources .. 9
Introduction

This protocol explains how to convert the mRNA in total RNA into a library of template molecules of known strand origin using the reagents provided in the Illumina® TruSeq® Stranded mRNA Sample Preparation Kits. The library is suitable for subsequent cluster generation and DNA sequencing.

The first step in the workflow involves purifying the poly-A containing mRNA molecules using poly-T oligo attached magnetic beads. Following purification, the mRNA is fragmented into small pieces using divalent cations under elevated temperature. The cleaved RNA fragments are copied into first strand cDNA using reverse transcriptase and random primers. Strand specificity is achieved by replacing dTTP with dUTP in the Second Strand Marking Mix (SMM), followed by second strand cDNA synthesis using DNA Polymerase I and RNase H. The incorporation of dUTP in second strand synthesis quenches the second strand during amplification, because the polymerase used in the assay is not incorporated past this nucleotide. The addition of Actinomycin D to First Stand Synthesis Act D mix (FSA) prevents spurious DNA-dependent synthesis, while allowing RNA-dependent synthesis, improving strand specificity. These cDNA fragments then have the addition of a single 'A' base and subsequent ligation of the adapter. The products are then purified and enriched with PCR to create the final cDNA library.

The sample preparation protocol offers:

- Strand information on RNA transcript
- Library capture of both coding RNA and multiple forms of non-coding RNA that are polyadenylated
- Reduced total assay time
- Optimized workflows for processing low sample (LS) and high sample (HS) numbers in parallel
- Compatibility with low-throughput (LT) and high-throughput (HT) kit configurations
- The TruSeq Stranded mRNA LT Sample Prep Kit contains adapter index tubes recommended for preparing and pooling 24 or fewer samples for sequencing
- The TruSeq Stranded mRNA HT Sample Prep Kit contains a 96-well plate with 96 uniquely indexed adapter combinations designed for manual or automated preparation of 96 uniquely indexed samples

The protocol is compatible with no indexing or a lower indexing pooling level. The libraries generated do not require PCR amplification to enable cluster generation, although PCR is recommended in the standard protocol to robustly meet the yield requirements of most standard applications.
Protocol Features

This guide documents the sample preparation protocol using the Illumina TruSeq Stranded mRNA LT Sample Prep Kit or TruSeq Stranded mRNA HT Sample Prep Kit.

- Chapter 2 Low Sample (LS) Protocol explains how to perform the TruSeq Stranded mRNA Sample Preparation using the Low Sample Protocol
- Chapter 3 High Sample (HS) Protocol explains how to perform the TruSeq Stranded mRNA Sample Preparation using the High Sample Protocol

Equivalent results can be expected from either protocol and their distinguishing elements are as follows:

<table>
<thead>
<tr>
<th>Table 1 Protocol Features</th>
<th>Low Sample</th>
<th>High Sample</th>
</tr>
</thead>
<tbody>
<tr>
<td>LT Kit - Number of samples processed at one time</td>
<td>≤ 48 with indexed adapter tubes</td>
<td>> 48 with indexed adapter tubes</td>
</tr>
<tr>
<td>HT Kit - Number of samples processed at one time</td>
<td>≤ 24 with indexed adapter plate</td>
<td>> 24 with indexed adapter plate</td>
</tr>
<tr>
<td>Plate Type</td>
<td>96-well 0.3 ml PCR 96-well MIDI</td>
<td>96-well HSP 96-well MIDI</td>
</tr>
<tr>
<td>Incubation Equipment</td>
<td>96-well thermal cycler</td>
<td>96-well thermal cycler Microheating system</td>
</tr>
<tr>
<td>Mixing Method</td>
<td>Pipetting</td>
<td>Microplate shaker</td>
</tr>
</tbody>
</table>

Illumina recommends the following kit, sample number, and protocol combinations:

<table>
<thead>
<tr>
<th>Table 2 Kit and Sample Number Recommendations</th>
<th>Number of Samples Processed At One Time</th>
<th>Recommended Kit</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td><24</td>
<td>LT</td>
</tr>
<tr>
<td></td>
<td>24–48</td>
<td>LT or HT</td>
</tr>
<tr>
<td></td>
<td>>48</td>
<td>HT</td>
</tr>
<tr>
<td>Kit</td>
<td>Number of Samples Supported</td>
<td>Number of Samples Processed At One Time</td>
</tr>
<tr>
<td>-----</td>
<td>-----------------------------</td>
<td>--</td>
</tr>
<tr>
<td>LT</td>
<td>48</td>
<td>≤48</td>
</tr>
<tr>
<td></td>
<td></td>
<td>>48</td>
</tr>
<tr>
<td>HT</td>
<td>96</td>
<td>≤24</td>
</tr>
<tr>
<td></td>
<td></td>
<td>>24</td>
</tr>
</tbody>
</table>
RNA Input Recommendations

It is important to follow the TruSeq Stranded mRNA Sample Preparation input recommendations.

Total RNA Input

- This protocol is optimized for 0.1–4 μg of total RNA.
 - Lower amounts might result in inefficient ligation and low yield.
- The protocol has been tested using 0.1–10 μg of high-quality universal human reference total RNA as input.
 - Use of RNA from other species, tissues, or qualities might require further optimization regarding the initial input amount.
- The protocol recommends diluting the in-line controls for tracking the steps involved in converting dsDNA into libraries.
 - The dilution is optimized for 0.1–4 μg of high-quality input RNA.
 - When using less RNA or RNA with very low mRNA content, these controls might need further dilution.
 - **If no controls are added, use Resuspension Buffer in place of the controls in the protocol.**
- It is important to know the quality of the RNA starting material. The fragmentation conditions were optimized for high-quality RNA.
 - Illumina does not recommend the use of low quality or degraded RNA with this protocol. Use of degraded RNA can result in low yield, over-representation of the 3' ends of the RNA molecules, or failure of the protocol.
 - **Illumina recommends that you check total RNA integrity following isolation using an Agilent Technologies 2100 Bioanalyzer for samples with an RNA Integrity Number (RIN) value ≥ 8.**
 - RNA that has DNA contamination results in an underestimation of the amount of RNA used.
 - Illumina recommends including a DNase step with the RNA isolation method. However, contaminant DNA is removed during mRNA purification.
The following figure shows a Universal Human Reference (UHR) starting RNA Bioanalyzer trace.

Figure 1 Starting RNA Bioanalyzer Trace

- Alternatively, you can run a formaldehyde 1% agarose gel and judge the integrity of RNA upon staining with ethidium bromide.
 - High-quality RNA shows a 28S rRNA band at 4.5 kb that should be twice the intensity of the 18S rRNA band at 1.9 kb.
 - Both kb determinations are relative to an RNA 6000 ladder.
 - The mRNA appears as a smear from 0.5 kb to 12 kb.

Purified mRNA Input

You can also use previously isolated mRNA as starting material. Use the entire fraction of mRNA purified from 0.1 μg to 4 μg of total RNA. If you start with isolated mRNA, follow the Illumina recommendations for isolated mRNA specified in the introduction of the Purify and Fragment mRNA procedures. Begin mRNA fragmentation with *Incubate RFP* on page 20 for LS processing or *Incubate RFP* on page 57 for HS processing.

Positive Control

Illumina recommends using Agilent Technologies Human UHR total RNA (catalog # 740000) as a positive control sample for this protocol.
In-Line Control DNA

The End Repair Control, A-Tailing Control, and Ligation Control reagents contain DNA fragments used as controls for the enzymatic activities of the Second Strand Marking Master Mix, A-Tailing Mix, and Ligation Mix, respectively. Each reagent contains dsDNA fragments designed to report the success or failure of a specific enzymatic activity used in the library preparation process. Sequencing determines the readout. If the sequence of an in-line control is in the final sequencing data viewed in the Sequence Analysis Viewer (SAV), it indicates that its corresponding step was successful. If it does not, or if it is in substantially diminished numbers, it indicates the step failed. The controls are intended for troubleshooting and are useful for identifying the specific mode of failure, but are uninformative in cases where sequencing data are not generated from a library.

NOTE
The use of these controls is optional and they can be replaced with the same volume of Resuspension Buffer.

The control molecules work through the design of their ends. Controls are added to the reactions before their corresponding step in the protocol. Their end structures match those of a DNA molecule that has not gone through the step. If the step is successful, the control molecule will be modified to participate in downstream reactions of library generation and resulting in sequencing data. If the step fails, the control molecule will not go forward in the process and no sequencing data will be generated. Using 1 µg of starting material, the controls yield approximately 0.2% of clusters, although this can vary based on library yield.
<table>
<thead>
<tr>
<th>Reagent</th>
<th>Function</th>
<th>Control</th>
<th>Structure of Control DNA Ends</th>
</tr>
</thead>
<tbody>
<tr>
<td>Second Strand Marking Master Mix</td>
<td>End repair: Generate blunt ended fragments by 3’→5’ exonuclease and 5’→3’ polymerase activities</td>
<td>End Repair Control 1*</td>
<td>5’ overhang at one end, 3’ overhang at other end</td>
</tr>
<tr>
<td>Second Strand Marking Master Mix</td>
<td>End repair: Add 5’-phosphate groups needed for downstream ligation</td>
<td>End Repair Control 2*</td>
<td>Blunt with 5’-OH group</td>
</tr>
<tr>
<td>A-Tailing Mix</td>
<td>A-tailing: Make fragments compatible with adapters and prevent self-igation by adding a 3’-A overhang</td>
<td>A-Tailing Control</td>
<td>Blunt with 5’-phosphate group</td>
</tr>
<tr>
<td>Ligation Mix</td>
<td>Ligation: Join 3’-T overhang adapters to 3’-A overhang inserts</td>
<td>Ligation Control</td>
<td>Single-base 3’ 'A' base overhang</td>
</tr>
</tbody>
</table>

*End Repair Control 1 and End Repair Control 2 are separate controls included in the End Repair Control reagent.

The control reagents can be used for various library insert sizes. Each is provided in ladders ranging from approximately 150–850 bp in 100 bp increments. Each control molecule has a unique DNA sequence, indicating both its function and size. The RTA software (v1.9, and later) recognizes these sequences and isolates the control sequences from the main body of sequencing reads. RTA reports the control sequences counts per lane in the controls tab of the RTA status.html page. For more information regarding the control read-out in the SAV, see the *Sequence Analysis Viewer User Guide (part # 15020619).*
The following resources are available for TruSeq Stranded mRNA Sample Preparation protocol guidance and sample tracking. Access these and other resources on the Illumina website at support.illumina.com/sequencing/kits.ilmn. Then, select **TruSeq Stranded mRNA LT Sample Prep Kit Support** or **TruSeq Stranded mRNA HT Sample Prep Kit Support**.

<table>
<thead>
<tr>
<th>Resource</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Training</td>
<td>Illustrates elements of the TruSeq Stranded mRNA Sample Preparation process. Viewing these videos is recommended for new and less experienced users before starting sample preparation.</td>
</tr>
<tr>
<td></td>
<td>- Click Training on TruSeq Stranded mRNA LT Sample Prep Kit Support or TruSeq Stranded mRNA HT Sample Prep Kit Support</td>
</tr>
<tr>
<td>Best Practices</td>
<td>Provides best practices specific to this protocol. Review these best practices before starting sample preparation. Topics include:</td>
</tr>
</tbody>
</table>
| | - Avoiding Cross-Contamination
- Handling RNA
- Temperature Considerations
- Handling Liquids
- Handling Master Mix Reagents
- Handling Magnetic Beads
- Equipment |
<p>| | - Click Best Practices on TruSeq Stranded mRNA LT Sample Prep Kit Support or TruSeq Stranded mRNA HT Sample Prep Kit Support |</p>
<table>
<thead>
<tr>
<th>Resource</th>
<th>Description</th>
</tr>
</thead>
</table>
| TruSeq Stranded mRNA Sample Preparation Low Sample Experienced User Card and Lab Tracking Form (part # 15031058) | Provides LS protocol instructions, but with less detail than what is provided in this user guide. **New or less experienced users are advised to follow this user guide and not the EUC and Lab Tracking Form.**
 - Click Documentation & Literature on TruSeq Stranded mRNA LT Sample Prep Kit Support or
 - Click Documentation & Literature on TruSeq Stranded mRNA HT Sample Prep Kit Support |
| TruSeq Stranded mRNA Sample Preparation High Sample Experienced User Card and Lab Tracking Form (part # 15031057) | Provides HS protocol instructions, but with less detail than what is provided in this user guide. **New or less experienced users are advised to follow this user guide and not the EUC and Lab Tracking Form.**
 - Click Documentation & Literature on TruSeq Stranded mRNA LT Sample Prep Kit Support or
 - Click Documentation & Literature on TruSeq Stranded mRNA HT Sample Prep Kit Support |
 - Click Documentation & Literature on TruSeq Stranded mRNA LT Sample Prep Kit Support or
 - Click Documentation & Literature on TruSeq Stranded mRNA HT Sample Prep Kit Support |
| Illumina Experiment Manager (IEM) | Enables you to create and edit appropriate sample sheets for Illumina sequencers and analysis software and record parameters for your sample plate.
 To download the software:
 - Click Downloads on TruSeq Stranded mRNA LT Sample Prep Kit Support or
 - Click Downloads on TruSeq Stranded mRNA HT Sample Prep Kit Support
 To download the documentation:
 - Click Documentation & Literature on TruSeq Stranded mRNA LT Sample Prep Kit Support or
 - Click Documentation & Literature on TruSeq Stranded mRNA HT Sample Prep Kit Support |
Low Sample (LS) Protocol

Introduction .. 12
Sample Prep Workflow ... 14
Purify and Fragment mRNA ... 15
Synthesize First Strand cDNA ... 21
Synthesize Second Strand cDNA .. 24
Adenylate 3’ Ends ... 28
Ligate Adapters ... 31
Enrich DNA Fragments ... 38
Validate Library ... 42
Normalize and Pool Libraries ... 44
Introduction

This chapter describes the TruSeq Stranded mRNA Sample Preparation LS protocol. Illumina recommends the following kit, sample number, and protocol combinations:

<table>
<thead>
<tr>
<th>Table 5</th>
<th>Kit and Sample Number Recommendations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of Samples Processed At One Time</td>
<td>Recommended Kit</td>
</tr>
<tr>
<td><24</td>
<td>LT</td>
</tr>
<tr>
<td>24–48</td>
<td>LT or HT</td>
</tr>
<tr>
<td>>48</td>
<td>HT</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Table 6</th>
<th>Kit and Protocol Recommendations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kit</td>
<td>Number of Samples Supported per Kit</td>
</tr>
<tr>
<td>LT</td>
<td>48</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>HT</td>
<td>96</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Follow the protocol in the order described, using the specified volumes and incubation parameters.
- Before proceeding review the following:
 - Best Practices—See Additional Resources on page 9 for information on how to access TruSeq Stranded mRNA Sample Preparation Best Practices on the Illumina website.
 - TruSeq Sample Preparation Pooling Guide (part # 15042173)—See Additional Resources on page 9 for information on how to download the guide from the Illumina website.
• Appendix A Supporting Information—Confirm your kit contents and make sure that you have obtained all of the requisite equipment and consumables for the LS protocol.
The following illustrates the processes of the TruSeq Stranded mRNA Sample Preparation LS protocol to prepare templates using 24 indexed adapter tubes or a RAP.

Figure 2 TruSeq Stranded mRNA Sample Preparation LS Workflow

- **Prepare for Pooling**
 - 0.1–4 µg Total RNA
- **Purify and Fragment mRNA**
 - Consumables: RBB, RWR, ELB, EPB, RPB, Water
 - Plates: RSP
- **First Strand cDNA Synthesis**
 - Consumables: FSA, SuperScript II
 - Plate: CDP
- **Second Strand cDNA Synthesis**
 - Consumables: AMPure XP Beads, CTE (Optional), ETOH, RSB, SMIM
 - Plate: ALP
- **Adenylate 3’ Ends**
 - Consumables: ATL, CTA (Optional), RSB
 - Plate: ALP
- **Ligate Adapters**
 - Consumables: AMPure XP Beads, CTE (Optional), ETOH, LIG, RNA Adaptors or RAP, RSB, STL
 - Plates: CAP, PCR
- **PCR Amplification**
 - Consumables: AMPure XP Beads, ETOH, PMM, PPC, RSB
 - Plate: TSP1
- **Validate Library**
 - Consumables: Agilent DNA 1000 Kit
- **Normalize and Pool Libraries**
 - Consumables: Tris-HCl 10 mM w/tween 20
 - Plates: DCT
 - PDIP (indexing only)

Optional Stopping Point: Store after cleanup at -15° to -25°C.
Purify and Fragment mRNA

This process purifies the polyA containing mRNA molecules using poly-T oligo attached magnetic beads using two rounds of purification. During the second elution of the polyA RNA, the RNA is also fragmented and primed for cDNA synthesis. Reference the following diagram while performing the purification procedures:

It is important to follow this procedure exactly to be sure of reproducibility.
NOTE
Allow the beads to fully pellet against the magnetic stand 5 minutes. Remove the supernatant from the beads immediately while the beads are still pelleted against the magnetic stand. Do not allow the pellets to dry.

NOTE
Illumina recommends that you use 0.1–4 µg of total RNA and use PCR plates with a magnetic plate stand for this process. Alternatively, you can start the protocol with 10–400 ng of previously isolated mRNA. If you do so, the mRNA must be concentrated into 5 µl or less before addition to the Fragment, Prime, Finish Mix. Concentrate by ethanol precipitation or on a Qiagen MinElute column.
 • If ethanol precipitation is used, resuspend the pellet in 18 µl Fragment, Prime, Finish Mix.
 • If a Qiagen MinElute column is used, elute the mRNA with 5 µl of molecular biology-grade water and add 13 µl Fragment, Prime, Finish Mix. The use of the MinElute column results in a loss of up to 50% of the mRNA due to the low elution volume.
In either case, heat the mRNA in Fragment, Prime, Finish Mix to fragment at Incubate RFP on page 20 in this process.

Consumables

<table>
<thead>
<tr>
<th>Item</th>
<th>Quantity</th>
<th>Storage</th>
<th>Supplied By</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bead Binding Buffer (BBB)</td>
<td>1 tube per 48 reactions</td>
<td>-15°C to -25°C</td>
<td>Illumina</td>
</tr>
<tr>
<td>Bead Washing Buffer (BWB)</td>
<td>1 tube per 48 reactions</td>
<td>-15°C to -25°C</td>
<td>Illumina</td>
</tr>
<tr>
<td>Elution Buffer (ELB)</td>
<td>1 tube per 48 reactions</td>
<td>-15°C to -25°C</td>
<td>Illumina</td>
</tr>
<tr>
<td>Fragment, Prime, Finish Mix (FPF)</td>
<td>1 tube per 48 reactions</td>
<td>-15°C to -25°C</td>
<td>Illumina</td>
</tr>
<tr>
<td>Resuspension Buffer (RSB)</td>
<td>1 tube</td>
<td>-15°C to -25°C</td>
<td>Illumina</td>
</tr>
<tr>
<td>RNA Purification Beads (RPB)</td>
<td>1 tube per 48 reactions</td>
<td>2°C to 8°C</td>
<td>Illumina</td>
</tr>
<tr>
<td>RBP (RNA Bead Plate) Barcode Label</td>
<td>1 label per plate</td>
<td>15°C to 30°C</td>
<td>Illumina</td>
</tr>
</tbody>
</table>
Item List

<table>
<thead>
<tr>
<th>Item</th>
<th>Quantity</th>
<th>Storage</th>
<th>Supplied By</th>
</tr>
</thead>
<tbody>
<tr>
<td>96-well 0.3 ml PCR Plate</td>
<td>1</td>
<td>15°C to 30°C</td>
<td>User</td>
</tr>
<tr>
<td>Microseal ‘B’ Adhesive Seals</td>
<td>3</td>
<td>15°C to 30°C</td>
<td>User</td>
</tr>
<tr>
<td>RNase/DNase-free Reagent Reservoirs (if using multichannel pipettes)</td>
<td>6</td>
<td>15°C to 30°C</td>
<td>User</td>
</tr>
<tr>
<td>RNase/DNase-free Eight-Tube Strips and Caps (if using multichannel pipettes)</td>
<td>6</td>
<td>15°C to 30°C</td>
<td>User</td>
</tr>
</tbody>
</table>

Preparation

- Remove the following from -15°C to -25°C storage and thaw them at room temperature:
 - Bead Binding Buffer
 - Bead Washing Buffer
 - Elution Buffer
 - Fragment, Prime, Finish Mix
 - Resuspension Buffer

NOTE
The Resuspension Buffer can be stored at 2°C to 8°C after the initial thaw.

NOTE
After use in this procedure, store the Bead Binding Buffer, Bead Washing Buffer, and Elution Buffer at 2°C to 8°C for subsequent experiments.

- Remove the RNA Purification Beads tube from 2°C to 8°C storage and let stand to bring to room temperature.
Pre-program the thermal cycler with the following programs:
- Choose the pre-heat lid option and set to 100°C
- 65°C for 5 minutes, 4°C hold—save as mRNA Denaturation
- 80°C for 2 minutes, 25°C hold—save as mRNA Elution 1
- 94°C for 8 minutes, 4°C hold—save as Elution 2 - Frag - Prime

NOTE
For inserts larger than 120–200 bp with a median size of 150 bp, see Appendix B Alternate Fragmentation Protocols.

- Set the centrifuge to 15°C to 25°C, if refrigerated.
- Apply an RBP barcode label to a new 96-well 0.3 ml PCR plate.

Make RBP
1. Dilute the total RNA with nuclease-free ultra pure water to a final volume of 50 µl in the new 96-well 0.3 ml PCR plate labeled with the RBP barcode.
2. Vortex the room temperature RNA Purification Beads tube vigorously to resuspend the oligo-dT beads.
3. Add 50 µl of RNA Purification Beads to each well of the RBP plate to bind the polyA RNA to the oligo dT magnetic beads. Gently pipette the entire volume up and down 6 times to mix thoroughly.
4. Seal the RBP plate with a Microseal ‘B’ adhesive seal.

Incubate 1 RBP
1. Place the sealed RBP plate on the pre-programmed thermal cycler. Close the lid and select mRNA Denaturation (65°C for 5 minutes, 4°C hold) to denature the RNA and facilitate binding of the polyA RNA to the beads.
2. Remove the RBP plate from the thermal cycler when it reaches 4°C.
3. Place the RBP plate on the bench and incubate at room temperature for 5 minutes to allow the RNA to bind to the beads.

Wash RBP
1. Remove the adhesive seal from the RBP plate.
2 Place the RBP plate on the magnetic stand at room temperature for 5 minutes to separate the polyA RNA bound beads from the solution.
3 Remove and discard all of the supernatant from each well of the RBP plate.
4 Remove the RBP plate from the magnetic stand.
5 Wash the beads by adding 200 µl of Bead Washing Buffer in each well of the RBP plate to remove unbound RNA. Gently pipette the entire volume up and down 6 times to mix thoroughly.
6 Place the RBP plate on the magnetic stand at room temperature for 5 minutes.
7 Centrifuge the thawed Elution Buffer to 600 × g for 5 seconds.
8 Remove and discard all of the supernatant from each well of the RBP plate. The supernatant contains most of the ribosomal and other non-messenger RNA.
9 Remove the RBP plate from the magnetic stand.
10 Add 50 µl of Elution Buffer in each well of the RBP plate. Gently pipette the entire volume up and down 6 times to mix thoroughly.
11 Seal the RBP plate with a Microseal ‘B’ adhesive seal.
12 Store the Elution Buffer tube at 4°C.

Incubate 2 RBP

1 Place the sealed RBP plate on the pre-programmed thermal cycler. Close the lid and select **mRNA Elution 1** (80°C for 2 minutes, 25°C hold) to elute the mRNA from the beads. This releases both the mRNA and any contaminant rRNA that has bound the beads non-specifically.
2 Remove the RBP plate from the thermal cycler when it reaches 25°C.
3 Place the RBP plate on the bench at room temperature.
4 Remove the adhesive seal from the RBP plate.

Make RFP

1 Centrifuge the thawed Bead Binding Buffer to 600 × g for 5 seconds.
2 Add 50 μl of Bead Binding Buffer to each well of the RBP plate. This allows mRNA to specifically rebind the beads, while reducing the amount of rRNA that non-specifically binds. Gently pipette the entire volume up and down 6 times to mix thoroughly.

3 Incubate the RBP plate at room temperature for 5 minutes and store the Bead Binding Buffer tube at 2°C to 8°C.

4 Place the RBP plate on the magnetic stand at room temperature for 5 minutes.

5 Remove and discard all of the supernatant from each well of the RBP plate.

6 Remove the RBP plate from the magnetic stand.

7 Wash the beads by adding 200 μl of Bead Washing Buffer in each well of the RBP plate. Gently pipette the entire volume up and down 6 times to mix thoroughly.

8 Store the Bead Washing Buffer tube at 2°C to 8°C.

9 Place the RBP plate on the magnetic stand at room temperature for 5 minutes.

10 Remove and discard all of the supernatant from each well of the RBP plate. The supernatant contains residual rRNA and other contaminants that were released in the first elution and did not rebind the beads.

11 Remove the RBP plate from the magnetic stand.

12 Add 19.5 μl of Fragment, Prime, Finish Mix to each well of the RBP plate. Gently pipette the entire volume up and down 6 times to mix thoroughly. The Fragment, Prime, Finish Mix contains random hexamers for RT priming and serves as the 1st strand cDNA synthesis reaction buffer.

13 Seal the RBP plate with a Microseal ‘B’ adhesive seal.

14 Store the Fragment, Prime, Finish Mix tube at -15°C to -25°C.

Incubate RFP

1 Place the sealed RBP plate on the pre-programmed thermal cycler. Close the lid and select **Elution 2 - Frag - Prime** (94°C for 8 minutes, 4°C hold) to elute, fragment, and prime the RNA.

2 Remove the RBP plate from the thermal cycler when it reaches 4°C and centrifuge briefly.

3 Proceed immediately to **Synthesize First Strand cDNA** on page 21.
Synthesize First Strand cDNA

This process reverse transcribes the cleaved RNA fragments that were primed with random hexamers into first strand cDNA using reverse transcriptase and random primers. The addition of Actinomycin D to the First Stand Synthesis Act D mix (FSA) prevents spurious DNA-dependent synthesis, while allowing RNA-dependent synthesis, improving strand specificity.

Consumables

<table>
<thead>
<tr>
<th>Item</th>
<th>Quantity</th>
<th>Storage</th>
<th>Supplied By</th>
</tr>
</thead>
<tbody>
<tr>
<td>First Strand Synthesis Act D Mix (FSA)</td>
<td>1 tube per 48 reactions</td>
<td>-15°C to -25°C</td>
<td>Illumina</td>
</tr>
<tr>
<td>CDP (cDNA Plate) Barcode Label</td>
<td>1 label per plate</td>
<td>15°C to 30°C</td>
<td>Illumina</td>
</tr>
<tr>
<td>96-well 0.3 ml PCR Plate</td>
<td>1</td>
<td>15°C to 30°C</td>
<td>User</td>
</tr>
<tr>
<td>Microseal ‘B’ Adhesive Seal</td>
<td>1</td>
<td>15°C to 30°C</td>
<td>User</td>
</tr>
<tr>
<td>RNase/DNase-free Eight-Tube Strips and Caps (if using multichannel pipettes)</td>
<td>1</td>
<td>15°C to 30°C</td>
<td>User</td>
</tr>
<tr>
<td>RNase/DNase-free Reagent Reservoirs (if using multichannel pipettes)</td>
<td>1</td>
<td>15°C to 30°C</td>
<td>User</td>
</tr>
<tr>
<td>SuperScript II Reverse Transcriptase</td>
<td>1 tube</td>
<td>-15°C to -25°C</td>
<td>User</td>
</tr>
</tbody>
</table>

WARNING
First Strand Synthesis Act D Mix contains Actinomycin D, a toxin. Personal injury can occur through inhalation, ingestion, skin contact, and eye contact. Dispose of containers and any unused contents in accordance with the governmental safety standards for your region. Refer to the product material safety data sheet (MSDS) for detailed environmental, health, and safety information. MSDSs are available for this kit on the Illumina website at www.illumina.com/msds.
Preparation

- Remove one tube of First Strand Synthesis Act D Mix from -15°C to -25°C storage and thaw it at room temperature.
- Pre-program the thermal cycler with the following program and save as Synthesize 1st Strand:
 - Choose the pre-heat lid option and set to 100°C
 - 25°C for 10 minutes
 - 42°C for 15 minutes
 - 70°C for 15 minutes
 - Hold at 4°C
- Apply a CDP barcode label to a new 96-well 0.3 ml PCR plate.

NOTE
The First Strand Synthesis Mix Act D with SuperScript II added is stable to additional freeze-thaw cycles and can be used for subsequent experiments. If more than six freeze-thaw cycles are anticipated, divide the First Strand Synthesis Mix Act D and SuperScript II mix into smaller aliquots and store at -15°C to -25°C.

Make CDP

1. Remove the adhesive seal from the RBP plate.
2. Place the RBP plate on the magnetic stand at room temperature for 5 minutes. Do not remove the plate from the magnetic stand.
3. Transfer 17 μl supernatant from each well of the RBP plate to the corresponding well of the new 0.3 ml PCR plate labeled with the CDP barcode.
4. Centrifuge the thawed First Strand Synthesis Act D Mix tube to 600 × g for 5 seconds.
5. Add 50 μl SuperScript II to the First Strand Synthesis Act D Mix tube. If you are not using the entire contents of the First Strand Synthesis Act D Mix tube, add SuperScript II at a ratio of 1 μl SuperScript II for each 9 μl First Strand Synthesis Act D Mix. Mix gently, but thoroughly, and centrifuge briefly. Label the First Strand Synthesis Act D Mix tube to indicate that the SuperScript II has been added.
6. Add 8 μl of First Strand Synthesis Act D Mix and SuperScript II mix to each well of the CDP plate. Gently pipette the entire volume up and down 6 times to mix thoroughly.
7 Seal the CDP plate with a Microseal ‘B’ adhesive seal and centrifuge briefly.

8 Return the First Strand Synthesis Act D Mix tube to -15°C to -25°C storage immediately after use.

Incubate 1 CDP

1 Place the sealed CDP plate on the pre-programmed thermal cycler. Close the lid, and then select and run the **Synthesize 1st Strand** program.
 a Choose the pre-heat lid option and set to 100°C
 b 25°C for 10 minutes
 c 42°C for 15 minutes
 d 70°C for 15 minutes
 e Hold at 4°C

2 When the thermal cycler reaches 4°C, remove the CDP plate from the thermal cycler and proceed immediately to **Synthesize Second Strand cDNA** on page 24.
Synthesize Second Strand cDNA

This process removes the RNA template and synthesizes a replacement strand, incorporating dUTP in place of dTTP to generate ds cDNA. The incorporation of dUTP quenches the second strand during amplification, because the polymerase does not incorporate past this nucleotide. AMPure XP beads are used to separate the ds cDNA from the second strand reaction mix. At the end of this process, you have blunt-ended cDNA.

Consumables

<table>
<thead>
<tr>
<th>Item</th>
<th>Quantity</th>
<th>Storage</th>
<th>Supplied By</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Optional) End Repair Control (CTE)</td>
<td>1 tube per 48 reactions</td>
<td>-15°C to -25°C</td>
<td>Illumina</td>
</tr>
<tr>
<td>Resuspension Buffer (RSB)</td>
<td>1 tube</td>
<td>2°C to 8°C</td>
<td>Illumina</td>
</tr>
<tr>
<td>Second Strand Marking Master Mix (SMM)</td>
<td>1 tube per 48 reactions</td>
<td>-15°C to -25°C</td>
<td>Illumina</td>
</tr>
<tr>
<td>ALP (Adapter Ligation Plate) Barcode Label</td>
<td>1 label per plate</td>
<td>15°C to 30°C</td>
<td>Illumina</td>
</tr>
<tr>
<td>96-well 0.3 ml PCR Plate</td>
<td>1</td>
<td>15°C to 30°C</td>
<td>User</td>
</tr>
<tr>
<td>AMPure XP Beads</td>
<td>90 µl per sample</td>
<td>2°C to 8°C</td>
<td>User</td>
</tr>
<tr>
<td>Freshly Prepared 80% Ethanol (EtOH)</td>
<td>400 µl per sample</td>
<td>15°C to 30°C</td>
<td>User</td>
</tr>
<tr>
<td>Microseal ‘B’ Adhesive Seals</td>
<td>2</td>
<td>15°C to 30°C</td>
<td>User</td>
</tr>
<tr>
<td>RNase/DNase-free Eight-Tube Strips and Caps (if using multichannel pipettes)</td>
<td>5</td>
<td>15°C to 30°C</td>
<td>User</td>
</tr>
<tr>
<td>RNase/DNase-free Reagent Reservoirs (if using multichannel pipettes)</td>
<td>5</td>
<td>15°C to 30°C</td>
<td>User</td>
</tr>
</tbody>
</table>
Preparation

- Remove the following from -15°C to -25°C storage and thaw them at room temperature:
 - End Repair Control

 NOTE
 The use of the End Repair Control is optional and it can be replaced with the same volume of Resuspension Buffer.

 - Second Strand Marking Master Mix
- Remove the Resuspension Buffer from 2°C to 8°C storage and bring it to room temperature.
- Remove the AMPure XP beads from storage and let stand for at least 30 minutes to bring them to room temperature.
- Pre-heat the thermal cycler to 16°C.
- Choose the thermal cycler pre-heat lid option and set to 30°C
- Apply an ALP barcode label to a new 96-well 0.3 ml PCR plate.

Add SMM

1. Remove the adhesive seal from the CDP plate.
2. Do one of the following:
 - If using the in-line control reagent:
 - Centrifuge the thawed End Repair Control tube to 600 × g for 5 seconds.
 - Dilute the End Repair Control to 1/50 in Resuspension Buffer (For example, 2 µl End Repair Control + 98 µl Resuspension Buffer) before use. Discard the diluted End Repair Control after use.
 - Add 5 µl of diluted End Repair Control to each well of the CDP plate.
 - If not using the in-line control reagent, add 5 µl of Resuspension Buffer to each well of the CDP plate.
3. Centrifuge the thawed Second Strand Marking Master Mix to 600 × g for 5 seconds.
4. Add 20 µl of thawed Second Strand Marking Master Mix to each well of the CDP plate. Gently pipette the entire volume up and down 6 times to mix thoroughly.
5 Seal the CDP plate with a Microseal ‘B’ adhesive seal.
6 Return the Second Strand Marking Master Mix tube to -15°C to -25°C storage after use.

Incubate 2 CDP

1 Place the sealed CDP plate on the pre-heated thermal cycler. Close the lid and incubate at 16°C for 1 hour.
2 Remove the CDP plate from the thermal cycler and place it on the bench.
3 Remove the adhesive seal from the CDP plate.
4 Let the CDP plate stand to bring it to room temperature.

Purify CDP

1 Vortex the AMPure XP beads until they are well dispersed.
2 Add 90 µl of well-mixed AMPure XP beads to each well of the CDP plate containing 50 µl of ds cDNA. Gently pipette the entire volume up and down 10 times to mix thoroughly.
3 Incubate the CDP plate at room temperature for 15 minutes.
4 Place the CDP plate on the magnetic stand at room temperature, for 5 minutes to make sure that all of the beads are bound to the side of the wells.
5 Remove and discard 135 µl supernatant from each well of the CDP plate.

NOTE

Leave the CDP plate on the magnetic stand while performing the following 80% EtOH wash steps (6–8).

6 With the CDP plate on the magnetic stand, add 200 µl freshly prepared 80% EtOH to each well without disturbing the beads.
7 Incubate the CDP plate at room temperature for 30 seconds, and then remove and discard all of the supernatant from each well.
8 Repeat steps 6 and 7 one time for a total of two 80% EtOH washes.
9 Let the CDP plate stand at room temperature for 15 minutes to dry, and then remove the plate from the magnetic stand.
10 Centrifuge the thawed, room temperature Resuspension Buffer to 600 × g for 5 seconds.
11 Add 17.5 µl Resuspension Buffer to each well of the CDP plate. Gently pipette the entire volume up and down 10 times to mix thoroughly.
12 Incubate the CDP plate at room temperature for 2 minutes.
13 Place the CDP plate on the magnetic stand at room temperature for 5 minutes.
14 Transfer 15 µl supernatant (ds cDNA) from the CDP plate to the new 96-well 0.3 ml PCR plate labeled with the ALP barcode.

SAFE STOPPING POINT
If you do not plan to proceed immediately to Adenylate 3’ Ends on page 28, you can safely stop the protocol here. If you are stopping, seal the ALP plate with a Microseal ‘B’ adhesive seal and store at -15°C to -25°C for up to seven days.
Adenylate 3' Ends

A single ‘A’ nucleotide is added to the 3’ ends of the blunt fragments to prevent them from ligating to one another during the adapter ligation reaction. A corresponding single ‘T’ nucleotide on the 3’ end of the adapter provides a complementary overhang for ligating the adapter to the fragment. This strategy ensures a low rate of chimera (concatenated template) formation.

Consumables

<table>
<thead>
<tr>
<th>Item</th>
<th>Quantity</th>
<th>Storage</th>
<th>Supplied By</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Optional) A-Tailing Control (CTA)</td>
<td>1 tube per 48 reactions</td>
<td>-15°C to -25°C</td>
<td>Illumina</td>
</tr>
<tr>
<td>A-Tailing Mix (ATL)</td>
<td>1 tube per 48 reactions</td>
<td>-15°C to -25°C</td>
<td>Illumina</td>
</tr>
<tr>
<td>Resuspension Buffer (RSB)</td>
<td>1 tube</td>
<td>2°C to 8°C</td>
<td>Illumina</td>
</tr>
<tr>
<td>Microseal ‘B’ Adhesive Seal</td>
<td>1</td>
<td>15°C to 30°C</td>
<td>User</td>
</tr>
<tr>
<td>RNase/DNase-free Eight-Tube Strips and Caps</td>
<td>3</td>
<td>15°C to 30°C</td>
<td>User</td>
</tr>
<tr>
<td>(if using multichannel pipettes)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RNase/DNase-free Reagent Reservoirs</td>
<td>3</td>
<td>15°C to 30°C</td>
<td>User</td>
</tr>
<tr>
<td>(if using multichannel pipettes)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Preparation

- Remove the following from -15°C to -25°C storage and thaw them at room temperature:
 - A-Tailing Control

 NOTE
 The use of the A-Tailing Control is optional and it can be replaced with the same volume of Resuspension Buffer.

 - A-Tailing Mix
Remove the Resuspension Buffer from 2°C to 8°C storage and bring it to room temperature.
Remove the ALP plate from -15°C to -25°C storage, if it was stored at the conclusion of Purify CDP on page 26.
 • Let it thaw at room temperature.
 • Centrifuge the thawed ALP plate to 280 × g for 1 minute.
 • Remove the adhesive seal from the ALP plate.
Pre-program the thermal cycler with the following program and save as ATAIL70:
 • Choose the pre-heat lid option and set to 100°C
 • 37°C for 30 minutes
 • 70°C for 5 minutes
 • Hold at 4°C

Add ATL

1. Do one of the following:
 • If using the in-line control reagent:
 — Centrifuge the thawed A-Tailing Control tube to 600 × g for 5 seconds.
 — Dilute the A-Tailing Control to 1/100 in Resuspension Buffer (For example, 1 µl A-Tailing Control + 99 µl Resuspension Buffer) before use. Discard the diluted A-Tailing Control after use.
 — Add 2.5 µl of diluted A-Tailing Control to each well of the ALP plate.
 • If not using the in-line control reagent, add 2.5 µl of Resuspension Buffer to each well of the ALP plate.

2. Add 12.5 µl of thawed A-Tailing Mix to each well of the ALP plate. Gently pipette the entire volume up and down 10 times to mix thoroughly.

3. Seal the ALP plate with a Microseal ‘B’ adhesive seal.
Incubate 1 ALP

1. Place the sealed ALP plate on the pre-programmed thermal cycler. Close the lid, then select and run the ATAIL70 program.
 a. Choose the pre-heat lid option and set to 100°C
 b. 37°C for 30 minutes
 c. 70°C for 5 minutes
 d. Hold at 4°C

2. When the thermal cycler temperature is 4°C, remove the ALP plate from the thermal cycler, then proceed immediately to *Ligate Adapters* on page 31.
This process ligates multiple indexing adapters to the ends of the ds cDNA, preparing them for hybridization onto a flow cell.

Consumables

<table>
<thead>
<tr>
<th>Item</th>
<th>Quantity</th>
<th>Storage</th>
<th>Supplied By</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Optional) Ligation Control (CTL)</td>
<td>1 tube per 48 reactions</td>
<td>-15°C to -25°C</td>
<td>Illumina</td>
</tr>
<tr>
<td>Choose from the following depending on the kit you are using:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• TruSeq Stranded mRNA LT Sample Prep Kit contents:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• RNA Adapter Indices (AR001–AR016, AR018–AR023, AR025, AR027)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• TruSeq Stranded mRNA HT Sample Prep Kit contents:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• RAP (RNA Adapter Plate)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ligation Mix (LIG)</td>
<td>1 tube per 48 reactions</td>
<td>-15°C to -25°C</td>
<td>Illumina</td>
</tr>
<tr>
<td>Resuspension Buffer (RSB)</td>
<td>1 tube</td>
<td>2°C to 8°C</td>
<td>Illumina</td>
</tr>
<tr>
<td>Stop Ligation Buffer (STL)</td>
<td>1 tube per 48 reactions</td>
<td>-15°C to -25°C</td>
<td>Illumina</td>
</tr>
<tr>
<td>Barcode labels for:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• CAP (Clean Up ALP Plate)</td>
<td>1 label per plate</td>
<td>15°C to 30°C</td>
<td>Illumina</td>
</tr>
<tr>
<td>• PCR (Polymerase Chain Reaction Plate)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• RAP (RNA Adapter Plate) (if using the HT kit)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Item</td>
<td>Quantity</td>
<td>Storage</td>
<td>Supplied By</td>
</tr>
<tr>
<td>--</td>
<td>--------------</td>
<td>----------------</td>
<td>-------------</td>
</tr>
<tr>
<td>96-well 0.3 ml PCR Plates</td>
<td>2</td>
<td>15°C to 30°C</td>
<td>User</td>
</tr>
<tr>
<td>AMPure XP Beads</td>
<td>92 µl per sample</td>
<td>2°C to 8°C</td>
<td>User</td>
</tr>
<tr>
<td>Freshly Prepared 80% Ethanol (EtOH)</td>
<td>800 µl per sample</td>
<td>15°C to 30°C</td>
<td>User</td>
</tr>
<tr>
<td>Microseal ‘B’ Adhesive Seals</td>
<td>2</td>
<td>15°C to 30°C</td>
<td>User</td>
</tr>
<tr>
<td>RNase/DNase-free Eight-Tube Strips and Caps (if using multichannel pipettes)</td>
<td>4–28</td>
<td>15°C to 30°C</td>
<td>User</td>
</tr>
<tr>
<td>RNase/DNase-free Reagent Reservoirs (if using multichannel pipettes)</td>
<td>4–28</td>
<td>15°C to 30°C</td>
<td>User</td>
</tr>
</tbody>
</table>

Preparation

- Remove the following from -15°C to -25°C storage and thaw them at room temperature:
 - Appropriate RNA Adapter tubes (depending on the RNA Adapter Indices being used) or the RAP.

NOTE

- Review the *TruSeq Sample Preparation Pooling Guide (part # 15042173)*. See Additional Resources on page 9 for information on how to download the guide from the Illumina website.
- When indexing libraries using adapter index tubes, Illumina recommends arranging samples that are going to be combined into a common pool in the same row. Also, include a common index in each column. This arrangement facilitates pipetting operations when dispensing indexed adapters and pooling indexed libraries later in the protocol.
- When indexing libraries with the RAP, arrange samples that will be pooled together in the same orientation as the indices in the RAP.
NOTE
When indexing libraries with the RAP:
- Review *Handling Adapter Plate* in the *TruSeq Sample Preparation Pooling Guide* (part # 15042173). See *Additional Resources* on page 9 for information on how to download the guide from the Illumina website.
- Illumina recommends that the RAP does not undergo more than four freeze-thaw cycles. To maximize the use of the RAP, process more than 24 samples at a time. These samples can then be pooled in any supported configuration.

- Stop Ligation Buffer

NOTE
Do not remove the Ligation Mix tube from -15°C to -25°C storage until instructed to do so in the procedures.

- Ligation Control

NOTE
The use of the Ligation Control is optional and it can be replaced with the same volume of Resuspension Buffer.

- Remove the Resuspension Buffer from 2°C to 8°C storage and bring it to room temperature.
- Remove the AMPure XP Beads from storage and let stand for at least 30 minutes to bring them to room temperature.
- Pre-heat the thermal cycler to 30°C.
- Choose the thermal cycler pre-heat lid option and set to 100°C
- Apply a CAP barcode label to a new 96-well 0.3 ml PCR plate.
- Apply a PCR barcode label to a new 96-well 0.3 ml PCR plate.

Add LIG

1. Do one of the following:
 - If using RNA Adapter tubes, centrifuge the thawed tubes to 600 × g for 5 seconds.
 - If using a RAP:
 - Thaw the plate for 10 minutes at room temperature on the benchtop. Visually inspect the wells to make sure that they all are thawed.
 - Remove the adapter plate tape seal.
— Centrifuge the plate to 280 × g for 1 minute to collect all of the adapter to the bottom of the well.
— Remove the plastic cover. Save the cover if you are not processing the entire plate at one time.
— If it is the first time using this RAP, apply the RAP barcode label to the plate.

2 Centrifuge the Ligation Control (if using Ligation Control) and Stop Ligation Buffer tubes to 600 × g for 5 seconds.

3 Immediately before use, remove the Ligation Mix tube from -15°C to -25°C storage.

4 Remove the adhesive seal from the ALP plate.

5 Do one of the following:
 • If using the in-line control reagent:
 — Dilute the Ligation Control to 1/100 in Resuspension Buffer (For example, 1 μl Ligation Control + 99 μl Resuspension Buffer) before use. Discard the diluted Ligation Control after use.
 — Add 2.5 μl of diluted Ligation Control to each well of the ALP plate.
 • If not using the in-line control reagent, add 2.5 μl of Resuspension Buffer to each well of the ALP plate.

6 Add 2.5 μl of Ligation Mix to each well of the ALP plate.

7 Return the Ligation Mix tube to -15°C to -25°C storage immediately after use.

8 Do one of the following:
 • If using RNA Adapter tubes, add 2.5 μl of the thawed RNA Adapter Index to each well of the ALP plate. Gently pipette the entire volume up and down 10 times to mix thoroughly.
 • If using a RAP:
 — Place the RAP on the benchtop so that the part number barcode, on the long side of the plate, is facing you and the clipped corner is on the lower left.

Figure 4 Correct RAP Orientation
— Do one of the following to pierce the foil seal:
 — If using the entire plate at one time, use the bottom of a clean 96-well semi-
 skirted PCR plate to pierce a hole in all of the well seals simultaneously. Gently, but firmly, press the clean plate over the foil seal.
 — If using only part of the plate, use the bottom of a clean eight-tube strip,
 with caps attached, to pierce holes in the seals of the wells that will be
 used for ligation. Repeat with a new, clean eight-tube strip, with caps
 attached, for each row or column of adapters that will be used for ligation.
 — Using an eight-tip multichannel pipette, transfer 2.5 µl of the thawed RNA
 Adapter from the RAP well to each well of the ALP plate. Gently pipette the
 entire volume up and down 10 times to mix thoroughly.

9 Seal the ALP plate with a Microseal ‘B’ adhesive seal.
10 Centrifuge the ALP plate to 280 × g for 1 minute.

Incubate 2 ALP

1 Place the sealed ALP plate on the pre-heated thermal cycler. Close the lid and incubate
 at 30°C for 10 minutes.
2 Remove the ALP plate from the thermal cycler.

Add STL

1 Remove the adhesive seal from the ALP plate.
2 Add 5 µl of Stop Ligation Buffer to each well of the ALP plate to inactivate the ligation.
 Gently pipette the entire volume up and down 10 times to mix thoroughly.

Clean Up ALP

1 Vortex the AMPure XP Beads for at least 1 minute or until they are well dispersed.
2 Add 42 µl of mixed AMPure XP Beads to each well of the ALP plate. Gently pipette the
 entire volume up and down 10 times to mix thoroughly.
3 Incubate the ALP plate at room temperature for 15 minutes.
4 Place the ALP plate on the magnetic stand at room temperature for 5 minutes or until
 the liquid is clear.
5 Remove and discard 79.5 μl supernatant from each well of the ALP plate. Take care not to disturb the beads.

NOTE
Leave the ALP plate on the magnetic stand while performing the following 80% EtOH wash steps (6–8).

6 With the ALP plate on the magnetic stand, add 200 μl freshly prepared 80% EtOH to each well without disturbing the beads.

7 Incubate the ALP plate at room temperature for 30 seconds, and then remove and discard all of the supernatant from each well. Take care not to disturb the beads.

8 Repeat steps 6 and 7 one time for a total of two 80% EtOH washes.

9 With the ALP plate on the magnetic stand, let the samples air-dry at room temperature for 15 minutes.

10 Remove the ALP plate from the magnetic stand.

11 Add 52.5 μl Resuspension Buffer to each well of the ALP plate. Gently pipette the entire volume up and down 10 times to mix thoroughly or until the beads are fully resuspended.

12 Incubate the ALP plate at room temperature for 2 minutes.

13 Place the ALP plate on the magnetic stand at room temperature for 5 minutes or until the liquid is clear.

14 Transfer 50 μl supernatant from each well of the ALP plate to the corresponding well of the new 0.3 ml PCR plate labeled with the CAP barcode. Take care not to disturb the beads.

15 Vortex the AMPure XP Beads until they are well dispersed.

16 Add 50 μl of mixed AMPure XP Beads to each well of the CAP plate for a second cleanup. Gently pipette the entire volume up and down 10 times to mix thoroughly.

17 Incubate the CAP plate at room temperature for 15 minutes.

18 Place the CAP plate on the magnetic stand at room temperature for 5 minutes or until the liquid is clear.

19 Remove and discard 95 μl supernatant from each well of the CAP plate. Take care not to disturb the beads.
NOTE

Leave the CAP plate on the magnetic stand while performing the following 80% EtOH wash steps (20–22)

20 With the CAP plate on the magnetic stand, add 200 μl freshly prepared 80% EtOH to each well. Take care not to disturb the beads.

21 Incubate the CAP plate at room temperature for 30 seconds, and then remove and discard all of the supernatant from each well. Take care not to disturb the beads.

22 Repeat steps 20 and 21 one time for a total of two 80% EtOH washes.

23 With the CAP plate on the magnetic stand, let the samples air-dry at room temperature for 15 minutes, and then remove the plate from the magnetic stand.

24 Add 22.5 μl Resuspension Buffer to each well of the CAP plate. Gently pipette the entire volume up and down 10 times to mix thoroughly or until the beads are fully resuspended.

25 Incubate the CAP plate at room temperature for 2 minutes.

26 Place the CAP plate on the magnetic stand at room temperature for 5 minutes or until the liquid is clear.

27 Transfer 20 μl supernatant from each well of the CAP plate to the corresponding well of the new 0.3 ml PCR plate labeled with the PCR barcode. Take care not to disturb the beads.

SAFE STOPPING POINT

If you do not plan to proceed immediately to Enrich DNA Fragments on page 38, you can safely stop the protocol here. If you are stopping, seal the PCR plate with a Microseal ‘B’ adhesive seal and store at -15°C to -25°C for up to seven days.
Enrich DNA Fragments

This process uses PCR to selectively enrich those DNA fragments that have adapter molecules on both ends and to amplify the amount of DNA in the library. The PCR is performed with a PCR Primer Cocktail that anneals to the ends of the adapters. Minimize the number of PCR cycles to avoid skewing the representation of the library.

NOTE

PCR enriches for fragments that have adapters ligated on both ends. Fragments with only one or no adapters on their ends are by-products of inefficiencies in the ligation reaction. Neither species can be used to make clusters. Fragments without any adapters cannot hybridize to surface-bound primers in the flow cell. Fragments with an adapter on only one end can hybridize to surface bound primers, but cannot form clusters.

Consumables

<table>
<thead>
<tr>
<th>Item</th>
<th>Quantity</th>
<th>Storage</th>
<th>Supplied By</th>
</tr>
</thead>
<tbody>
<tr>
<td>PCR Master Mix (PMM)</td>
<td>1 tube per 48 reactions</td>
<td>-15°C to -25°C</td>
<td>Illumina</td>
</tr>
<tr>
<td>PCR Primer Cocktail (PPC)</td>
<td>1 tube per 48 reactions</td>
<td>-15°C to -25°C</td>
<td>Illumina</td>
</tr>
<tr>
<td>Resuspension Buffer (RSB)</td>
<td>1 tube</td>
<td>2°C to 8°C</td>
<td>Illumina</td>
</tr>
<tr>
<td>TSP1 (Target Sample Plate) Barcode Label</td>
<td>1 label per plate</td>
<td>15°C to 30°C</td>
<td>Illumina</td>
</tr>
<tr>
<td>96-well 0.3 ml PCR Plate</td>
<td>1</td>
<td>15°C to 30°C</td>
<td>User</td>
</tr>
<tr>
<td>AMPure XP Beads</td>
<td>50 µl per sample</td>
<td>2°C to 8°C</td>
<td>User</td>
</tr>
<tr>
<td>Freshly Prepared 80% Ethanol (EtOH)</td>
<td>400 µl per sample</td>
<td>15°C to 30°C</td>
<td>User</td>
</tr>
<tr>
<td>Microseal ‘B’ Adhesive Seals</td>
<td>2</td>
<td>15°C to 30°C</td>
<td>User</td>
</tr>
<tr>
<td>RNase/DNase-free Eight-Tube Strips and Caps</td>
<td>5</td>
<td>15°C to 30°C</td>
<td>User</td>
</tr>
<tr>
<td>Item</td>
<td>Quantity</td>
<td>Storage</td>
<td>Supplied By</td>
</tr>
<tr>
<td>---</td>
<td>----------</td>
<td>---------------</td>
<td>-------------</td>
</tr>
<tr>
<td>RNase/DNase-free Reagent Reservoirs (if using multichannel pipettes)</td>
<td>5</td>
<td>15°C to 30°C</td>
<td>User</td>
</tr>
</tbody>
</table>

Preparation

- Remove the PCR Master Mix and PCR Primer Cocktail from -15°C to -25°C storage and thaw them at room temperature.
- Centrifuge the thawed PCR Master Mix and PCR Primer Cocktail tubes to 600 × g for 5 seconds.
- Remove the Resuspension Buffer from 2°C to 8°C storage and bring it to room temperature.
- Remove the AMPure XP Beads from 2°C to 8°C storage and let stand for at least 30 minutes to bring them to room temperature.
- Remove the PCR plate from -15°C to -25°C storage, if it was stored at the conclusion of Clean Up ALP on page 35.
 - Let it thaw at room temperature.
 - Centrifuge the thawed PCR plate to 280 × g for 1 minute.
 - Remove the adhesive seal from the thawed PCR plate.
- Pre-program the thermal cycler with the following program and save as PCR:
 - Choose the pre-heat lid option and set to 100°C
 - 98°C for 30 seconds
 - 15 cycles of:
 - 98°C for 10 seconds
 - 60°C for 30 seconds
 - 72°C for 30 seconds
 - 72°C for 5 minutes
 - Hold at 4°C
- Apply a TSP1 barcode label to a new 96-well 0.3 ml PCR plate.
Make PCR

1. Add 5 µl of thawed PCR Primer Cocktail to each well of the PCR plate.
2. Add 25 µl of thawed PCR Master Mix to each well of the PCR plate. Gently pipette the entire volume up and down 10 times to mix thoroughly.
3. Seal the PCR plate with a Microseal ‘B’ adhesive seal.

Amp PCR

1. Place the sealed PCR plate on the pre-programmed thermal cycler. Close the lid, then select and run PCR to amplify the plate.
 a. Choose the pre-heat lid option and set to 100°C
 b. 98°C for 30 seconds
 c. 15 cycles of:
 - 98°C for 10 seconds
 - 60°C for 30 seconds
 - 72°C for 30 seconds
 d. 72°C for 5 minutes
 e. Hold at 4°C

Clean Up PCR

1. Remove the adhesive seal from the PCR plate.
2. Vortex the AMPure XP Beads until they are well dispersed.
3. Do one of the following, depending on the adapter type used:
 - If using the RNA Adapter tubes, add 50 µl of the mixed AMPure XP Beads to each well of the PCR plate containing 50 µl of the PCR amplified library. Gently pipette the entire volume up and down 10 times to mix thoroughly.
 - If using the RAP, add 47.5 µl of the mixed AMPure XP Beads to each well of the PCR plate containing 50 µl of the PCR amplified library. Gently pipette the entire volume up and down 10 times to mix thoroughly.
4. Incubate the PCR plate at room temperature for 15 minutes.
5 Place the PCR plate on the magnetic stand at room temperature for 5 minutes or until the liquid is clear.

6 Remove and discard 95 μl supernatant from each well of the PCR plate.

NOTE
Leave the PCR plate on the magnetic stand while performing the following 80% EtOH wash steps (7–9).

7 With the PCR plate on the magnetic stand, add 200 μl freshly prepared 80% EtOH to each well without disturbing the beads.

8 Incubate the PCR plate at room temperature for 30 seconds, and then remove and discard all of the supernatant from each well.

9 Repeat steps 7 and 8 one time for a total of two 80% EtOH washes.

10 With the PCR plate on the magnetic stand, let the samples air-dry at room temperature for 15 minutes, and then remove the plate from the magnetic stand.

11 Add 32.5 μl Resuspension Buffer to each well of the PCR plate. Gently pipette the entire volume up and down 10 times to mix thoroughly.

12 Incubate the PCR plate at room temperature for 2 minutes.

13 Place the PCR plate on the magnetic stand at room temperature for 5 minutes or until the liquid is clear.

14 Transfer 30 μl supernatant from each well of the PCR plate to the corresponding well of the new 0.3 ml PCR plate labeled with the TSP1 barcode.

SAFE STOPPING POINT
If you do not plan to proceed immediately to *Validate Library* on page 42, you can safely stop the protocol here. If you are stopping, seal the TSP1 plate with a Microseal ‘B’ adhesive seal and store at -15°C to -25°C for up to 7 days.
Validate Library

Illumina recommends performing the following procedures for quality control analysis on your sample library and quantification of the DNA library templates.

Quantify Libraries

To achieve the highest quality data on Illumina sequencing platforms, it is important to create optimum cluster densities across every lane of the flow cell. Optimizing cluster densities requires accurate quantitation of DNA library templates. Quantify your libraries using qPCR according to the Illumina Sequencing Library qPCR Quantification Guide (part # 11322363).

Quality Control

1. Load 1 μl of the resuspended construct on an Agilent Technologies 2100 Bioanalyzer using a DNA-specific chip such as the Agilent DNA 1000.

2. Check the size and purity of the sample. The final product should be a band at approximately 260 bp.

Figure 5 Example of TruSeq Stranded mRNA Sample Preparation Library Size Distribution
Figure 6 TruSeq Stranded mRNA Sample Preparation 260 bp PCR Product
Normalize and Pool Libraries

This process describes how to prepare DNA templates for cluster generation. Indexed DNA libraries are normalized to 10 nM in the DCT plate and then pooled in equal volumes in the PDP plate. DNA libraries not intended for pooling are normalized to 10 nM in the DCT plate.

Consumables

<table>
<thead>
<tr>
<th>Item</th>
<th>Quantity</th>
<th>Storage</th>
<th>Supplied By</th>
</tr>
</thead>
<tbody>
<tr>
<td>Barcode labels for:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• DCT (Diluted Cluster Template)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• PDP (Pooled DCT Plate)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1 label per plate</td>
<td>15°C to 30°C</td>
<td>Illumina</td>
</tr>
<tr>
<td>96-well MIDI plates</td>
<td>2 (second plate for pooling only, if pooling > 40 samples)</td>
<td>15°C to 30°C</td>
<td>User</td>
</tr>
<tr>
<td>96-well 0.3 ml PCR plate</td>
<td>1</td>
<td>15°C to 30°C</td>
<td>User</td>
</tr>
<tr>
<td>(for pooling only, if pooling ≤ 40 samples)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Microseal ‘B’ Adhesive Seals</td>
<td>2</td>
<td>15°C to 30°C</td>
<td>User</td>
</tr>
<tr>
<td>Tris-HCl 10 mM, pH8.5 with 0.1% Tween 20</td>
<td>Enough to normalize the concentration of each sample library to 10 nM</td>
<td>15°C to 30°C</td>
<td>User</td>
</tr>
</tbody>
</table>
Preparation

- Remove the TSP1 plate from -15°C to -25°C storage, if it was stored at the conclusion of Clean Up PCR on page 40.
 - Let it thaw at room temperature.
 - Centrifuge the thawed TSP1 plate to 280 × g for 1 minute.
 - Remove the adhesive seal from the thawed TSP1 plate.
- Apply a DCT barcode label to a new 96-well MIDI plate.
- [For pooling only] Apply a PDP barcode label to a new 96-well 0.3 ml PCR plate if pooling ≤ 40 samples or a 96-well MIDI plate if pooling > 40 samples.

Make DCT

1. Transfer 10 µl of sample library from each well of the TSP1 plate to the corresponding well of the new MIDI plate labeled with the DCT barcode.

2. Normalize the concentration of sample library in each well of the DCT plate to 10 nM using Tris-HCl 10 mM, pH 8.5 with 0.1% Tween 20.

NOTE
Depending on the yield quantification data of each sample library, the final volume in the DCT plate can vary from 10–400 µl.

3. Gently pipette the entire normalized sample library volume up and down 10 times to mix thoroughly.

4. Depending on the type of library you want to generate, do one of the following:
 - For non-pooled libraries, the protocol stops here. Do one of the following:
 - Proceed to cluster generation. For more information, see the cluster generation section of the user guide for your Illumina platform.
 - Seal the DCT plate with a Microseal ‘B’ adhesive seal and store at -15°C to -25°C.
 - For pooled libraries, proceed to Make PDP (for pooling only).

Make PDP (for pooling only)

NOTE
Do not make a PDP plate if you are not pooling samples.
1 Determine the number of samples to be combined together for each pool.

 NOTE
 Note the sample that is in each well, to avoid pooling two samples with the same index.

2 Do one of the following:
 • If pooling 2–24 samples:
 — Transfer 10 µl of each normalized sample library to be pooled from the DCT plate to one well of the new 0.3 ml PCR plate labeled with the PDP barcode. The total volume in each well of the PDP plate is 10 X the number of combined sample libraries and 20–240 µl (2–24 libraries). For example, the volume for 2 samples is 20 µl, the volume for 12 samples is 120 µl, or the volume for 24 samples is 240 µl.
 • If pooling 25–96 samples:
 — Using a multichannel pipette, transfer 5 µl of each normalized sample library in column 1 of the DCT plate to column 1 of the new 0.3 ml PCR or MIDI plate labeled with the PDP barcode.
 — Transfer 5 µl of each normalized sample library in column 2 of the DCT plate to column 1 of the PDP plate.
 — Repeat the transfer for as many times as there are remaining columns in the DCT plate. The result is a PDP plate with pooled samples in column 1. Gently pipette the entire volume of each well of column 1 up and down 10 times to mix thoroughly.
 — Combine the contents of each well of column 1 into well A2 of the PDP plate for the final pool.

3 Gently pipette the entire volume up and down 10 times to mix thoroughly.

4 Do one of the following:
 • Proceed to cluster generation. For more information, see the user guide for your Illumina sequencer.
 • Seal the PDP plate with a Microseal ‘B’ adhesive seal and store at -15°C to -25°C.
High Sample (HS) Protocol

Introduction .. 48
Sample Prep Workflow ... 50
Purify and Fragment mRNA .. 51
Synthesize First Strand cDNA ... 58
Synthesize Second Strand cDNA .. 61
Adenylate 3' Ends ... 65
Ligate Adapters .. 68
Enrich DNA Fragments ... 76
Validate Library ... 81
Normalize and Pool Libraries ... 83
Introduction

This chapter describes the TruSeq Stranded mRNA Sample Preparation HS protocol. Illumina recommends the following kit, sample number, and protocol combinations:

<table>
<thead>
<tr>
<th>Number of Samples Processed At One Time</th>
<th>Recommended Kit</th>
</tr>
</thead>
<tbody>
<tr>
<td><24</td>
<td>LT</td>
</tr>
<tr>
<td>24–48</td>
<td>LT or HT</td>
</tr>
<tr>
<td>>48</td>
<td>HT</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Kit</th>
<th>Number of Samples Supported per Kit</th>
<th>Number of Samples Processed At One Time</th>
<th>Protocol</th>
</tr>
</thead>
<tbody>
<tr>
<td>LT</td>
<td>48</td>
<td>≤48</td>
<td>LS</td>
</tr>
<tr>
<td></td>
<td></td>
<td>>48</td>
<td>HS</td>
</tr>
<tr>
<td>HT</td>
<td>96</td>
<td>≤24</td>
<td>LS</td>
</tr>
<tr>
<td></td>
<td></td>
<td>>24</td>
<td>HS</td>
</tr>
</tbody>
</table>

- Follow the protocol in the order described, using the specified volumes and incubation parameters.
- Before proceeding review the following:
 - Best Practices—See Additional Resources on page 9 for information on how to access TruSeq Stranded mRNA Sample Preparation Best Practices on the Illumina website.
 - TruSeq Sample Preparation Pooling Guide (part # 15042173)—See Additional Resources on page 9 for information on how to download the guide from the Illumina website.
• Appendix A Supporting Information—To confirm your kit contents and make sure that you have obtained all of the requisite equipment and consumables for the HS protocol.
Sample Prep Workflow

The following illustrates the processes of the TruSeq Stranded mRNA Sample Preparation HS protocol to prepare templates using 24 indexed adapter tubes or a RAP.

Figure 7 TruSeq Stranded mRNA Sample Preparation HS Workflow
Purify and Fragment mRNA

This process purifies the polyA containing mRNA molecules using poly-T oligo attached magnetic beads using two rounds of purification. During the second elution of the polyA RNA, the RNA is also fragmented and primed for cDNA synthesis. Reference the following diagram while performing the purification procedures:

Figure 8 TruSeq Stranded mRNA Sample Preparation Purification Workflow

It is important to follow this procedure exactly to be sure of reproducibility.
NOTE
Allow the beads to fully pellet against the magnetic stand 5 minutes. Remove the supernatant from the beads immediately while the beads are still pelleted against the magnetic stand. Do not allow the pellets to dry.

NOTE
Illumina recommends that you use 0.1–4 μg of total RNA and use PCR plates with a magnetic plate stand for this process. Alternatively, you can start the protocol with 10–400 ng of previously isolated mRNA. If you do so, the mRNA must be concentrated into 5 μl or less before addition to the Fragment, Prime, Finish Mix. Concentrate by ethanol precipitation or on a Qiagen MinElute column.

- If ethanol precipitation is used, resuspend the pellet in 18 μl Fragment, Prime, Finish Mix.
- If a Qiagen MinElute column is used, elute the mRNA with 5 μl of molecular biology-grade water and add 13 μl Fragment, Prime, Finish Mix. The use of the MinElute column results in loss of up to 50% of the mRNA due to the low elution volume.

In either case, heat the mRNA in Fragment, Prime, Finish Mix to fragment at Incubate RFP on page 20 in this process.

NOTE
For inserts larger than 120–200 bp with a median size of 150 bp, see Appendix B Alternate Fragmentation Protocols.

Consumables

<table>
<thead>
<tr>
<th>Item</th>
<th>Quantity</th>
<th>Storage</th>
<th>Supplied By</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bead Binding Buffer (BBB)</td>
<td>1 tube per 48 reactions</td>
<td>-15°C to -25°C</td>
<td>Illumina</td>
</tr>
<tr>
<td>Bead Washing Buffer (BWB)</td>
<td>1 tube per 48 reactions</td>
<td>-15°C to -25°C</td>
<td>Illumina</td>
</tr>
<tr>
<td>Elution Buffer (ELB)</td>
<td>1 tube per 48 reactions</td>
<td>-15°C to -25°C</td>
<td>Illumina</td>
</tr>
<tr>
<td>Fragment, Prime, Finish Mix (FPF)</td>
<td>1 tube per 48 reactions</td>
<td>-15°C to -25°C</td>
<td>Illumina</td>
</tr>
<tr>
<td>Resuspension Buffer (RSB)</td>
<td>1 tube</td>
<td>-15°C to -25°C</td>
<td>Illumina</td>
</tr>
<tr>
<td>Item</td>
<td>Quantity</td>
<td>Storage</td>
<td>Supplied By</td>
</tr>
<tr>
<td>---</td>
<td>-------------------</td>
<td>-----------------</td>
<td>-------------</td>
</tr>
<tr>
<td>RNA Purification Beads (RPB)</td>
<td>1 tube per 48</td>
<td>2°C to 8°C</td>
<td>Illumina</td>
</tr>
<tr>
<td></td>
<td>reactions</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Barcode labels for:</td>
<td>1 label per plate</td>
<td>15°C to 30°C</td>
<td>Illumina</td>
</tr>
<tr>
<td>• RBP (RNA Bead Plate)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• RFP (RNA Fragmentation Plate)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>96-well HSP Plate</td>
<td>1</td>
<td>15°C to 30°C</td>
<td>User</td>
</tr>
<tr>
<td>96-well MIDI Plate</td>
<td>1</td>
<td>15°C to 30°C</td>
<td>User</td>
</tr>
<tr>
<td>Microseal ‘B’ Adhesive Seals</td>
<td>7</td>
<td>15°C to 30°C</td>
<td>User</td>
</tr>
<tr>
<td>RNase/DNase-free Reagent Reservoirs</td>
<td>6</td>
<td>15°C to 30°C</td>
<td>User</td>
</tr>
<tr>
<td>(if using multichannel pipettes)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RNase/DNase-free Eight-Tube Strips and</td>
<td>6</td>
<td>15°C to 30°C</td>
<td>User</td>
</tr>
<tr>
<td>Caps (if using multichannel pipettes)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Preparation

- Remove the following from -15°C to -25°C storage and thaw them at room temperature:
 - Bead Binding Buffer
 - Bead Washing Buffer
 - Elution Buffer
 - Fragment, Prime, Finish Mix
 - Resuspension Buffer

NOTE

The Resuspension Buffer can be stored at 2°C to 8°C after the initial thaw.

NOTE

After use in this procedure, store the Bead Binding Buffer, Bead Washing Buffer, and Elution Buffer at 2°C to 8°C for subsequent experiments.

- Remove the RNA Purification Beads tube from 2°C to 8°C storage and let stand to bring to room temperature.
- Pre-heat the microheating system to 65°C.
- Pre-program the thermal cycler with the following program and save as **Elution 2 - Frag - Prime:**
 - Choose the pre-heat lid option and set to 100°C
 - 94°C for 8 minutes
 - Hold at 4°C
- Make sure that the microplate shaker is properly calibrated to 1000 rpm using a stroboscope.
- Set the centrifuge to 15°C to 25°C, if refrigerated.
- Apply an RBP barcode label to a new 96-well MIDI plate.
- Apply an RFP barcode label to a new 96-well HSP plate.

Make RBP

1. Dilute the total RNA with nuclease-free ultra pure water to a final volume of 50 µl in the new 96-well MIDI plate labeled with the RBP barcode.
2. Vortex the room temperature RNA Purification Beads tube vigorously to resuspend the oligo-dT beads.
3. Add 50 µl of RNA Purification Beads to each well of the RBP plate to bind the polyA RNA to the oligo dT magnetic beads. Mix thoroughly as follows:
 a. Seal the RBP plate with a Microseal ‘B’ adhesive seal.
 b. Shake the RBP plate on a microplate shaker continuously at 1000 rpm for 1 minute.

Incubate 1 RBP

1. Place the sealed RBP plate on the pre-heated microheating system. Close the lid and incubate at 65°C for 5 minutes to denature the RNA and facilitate binding of the polyA RNA to the beads.
2. Remove the RBP plate from the microheating system and place on ice for 1 minute.
3. Place the RBP plate on the bench and incubate at room temperature for 5 minutes to allow the RNA to bind to the beads.
4. Pre-heat the microheating system to 80°C for the subsequent incubation.
Wash RBP

1. Remove the adhesive seal from the RBP plate.
2. Place the RBP plate on the magnetic stand at room temperature for 5 minutes to separate the polyA RNA bound beads from the solution.
3. Remove and discard all of the supernatant from each well of the RBP plate.
4. Remove the RBP plate from the magnetic stand.
5. Wash the beads by adding 200 µl of Bead Washing Buffer in each well of the RBP plate to remove unbound RNA. Mix thoroughly as follows:
 a. Seal the RBP plate with a Microseal ‘B’ adhesive seal.
 b. Shake the RBP plate on a microplate shaker continuously at 1000 rpm for 1 minute.
6. Remove the adhesive seal from the RBP plate.
7. Place the RBP plate on the magnetic stand at room temperature for 5 minutes.
8. Centrifuge the thawed Elution Buffer to 600 × g for 5 seconds.
9. Remove and discard all of the supernatant from each well of the RBP plate. The supernatant contains most of the ribosomal and other non-messenger RNA.
10. Remove the RBP plate from the magnetic stand.
11. Add 50 µl of Elution Buffer in each well of the RBP plate. Mix thoroughly as follows:
 a. Seal the RBP plate with a Microseal ‘B’ adhesive seal.
 b. Shake the RBP plate on a microplate shaker continuously at 1000 rpm for 1 minute.
12. Store the Elution Buffer tube at 4°C.

Incubate 2 RBP

1. Place the sealed RBP plate on the pre-heated microheating system. Close the lid and incubate at 80°C for 2 minutes to elute the mRNA from the beads. This releases both the mRNA and any contaminant rRNA that has bound the beads non-specifically.
2. Remove the RBP plate from the microheating system and place on ice for 1 minute.
3. Place the RBP plate on the bench at room temperature.
4. Remove the adhesive seal from the RBP plate.
Make RFP

1. Centrifuge the thawed Bead Binding Buffer to 600 × g for 5 seconds.
2. Add 50 μl of Bead Binding Buffer to each well of the RBP plate. This allows mRNA to specifically rebind the beads, while reducing the amount of rRNA that non-specifically binds. Mix thoroughly as follows:
 a. Seal the RBP plate with a Microseal ‘B’ adhesive seal.
 b. Shake the RBP plate on a microplate shaker continuously at 1000 rpm for 1 minute.
3. Incubate the RBP plate at room temperature for 5 minutes and store the Bead Binding Buffer tube at 2°C to 8°C.
4. Remove the adhesive seal from the RBP plate.
5. Place the RBP plate on the magnetic stand at room temperature for 5 minutes.
6. Remove and discard all of the supernatant from each well of the RBP plate.
7. Remove the RBP plate from the magnetic stand.
8. Wash the beads by adding 200 μl of Bead Washing Buffer in each well of the RBP plate. Mix thoroughly as follows:
 a. Seal the RBP plate with a Microseal ‘B’ adhesive seal.
 b. Shake the RBP plate on a microplate shaker continuously at 1000 rpm for 1 minute.
9. Store the Bead Washing Buffer tube at 2°C to 8°C.
10. Remove the adhesive seal from the RBP plate.
11. Place the RBP plate on the magnetic stand at room temperature for 5 minutes.
12. Remove and discard all of the supernatant from each well of the RBP plate. The supernatant contains residual rRNA and other contaminants that were released in the first elution and did not rebind the beads.
13. Remove the RBP plate from the magnetic stand.
14. Add 19.5 μl of Fragment, Prime, Finish Mix to each well of the RBP plate. The Fragment, Prime, Finish Mix contains random hexamers for RT priming and serves as the 1st strand cDNA synthesis reaction buffer. Mix thoroughly as follows:
 a. Seal the RBP plate with a Microseal ‘B’ adhesive seal.
 b. Shake the RBP plate on a microplate shaker continuously at 1000 rpm for 1 minute.
15 Remove the adhesive seal from the RBP plate.
16 Transfer the entire contents from each well of the RBP plate to the corresponding well of the new HSP plate labeled with the RFP barcode.
17 Seal the RFP plate with a Microseal ‘B’ adhesive seal.
18 Store the Fragment, Prime, Finish Mix tube at -15°C to -25°C.

Incubate RFP

1 Place the sealed RFP plate on the pre-programmed thermal cycler. Close the lid and select **Elution 2 - Frag - Prime** (94°C for 8 minutes, 4°C hold) to elute, fragment, and prime the RNA.
2 Remove the RFP plate from the thermal cycler when it reaches 4°C and centrifuge briefly.
3 Proceed immediately to **Synthesize First Strand cDNA** on page 58.
Synthesize First Strand cDNA

This process reverse transcribes the cleaved RNA fragments that were primed with random hexamers into first strand cDNA using reverse transcriptase and random primers. The addition of Actinomycin D to the First Stand Synthesis Act D mix (FSA) prevents spurious DNA-dependent synthesis, while allowing RNA-dependent synthesis, improving strand specificity.

Consumables

<table>
<thead>
<tr>
<th>Item</th>
<th>Quantity</th>
<th>Storage</th>
<th>Supplied By</th>
</tr>
</thead>
<tbody>
<tr>
<td>First Strand Synthesis Act D Mix (FSA)</td>
<td>1 tube</td>
<td>-15°C to -25°C</td>
<td>Illumina</td>
</tr>
<tr>
<td>CDP (cDNA Plate) Barcode Label</td>
<td>1 label per plate</td>
<td>15°C to 30°C</td>
<td>Illumina</td>
</tr>
<tr>
<td>96-well HSP Plate</td>
<td>1</td>
<td>15°C to 30°C</td>
<td>User</td>
</tr>
<tr>
<td>Microseal ‘B’ Adhesive Seal</td>
<td>1</td>
<td>15°C to 30°C</td>
<td>User</td>
</tr>
<tr>
<td>RNase/DNase-free Eight-Tube Strips and Caps (if using multichannel pipettes)</td>
<td>1</td>
<td>15°C to 30°C</td>
<td>User</td>
</tr>
<tr>
<td>RNase/DNase-free Reagent Reservoirs (if using multichannel pipettes)</td>
<td>1</td>
<td>15°C to 30°C</td>
<td>User</td>
</tr>
<tr>
<td>SuperScript II Reverse Transcriptase</td>
<td>1 tube</td>
<td>-15°C to -25°C</td>
<td>User</td>
</tr>
</tbody>
</table>

WARNING
First Strand Synthesis Act D Mix contains Actinomycin D, a toxin. Personal injury can occur through inhalation, ingestion, skin contact, and eye contact. Dispose of containers and any unused contents in accordance with the governmental safety standards for your region. Refer to the product material safety data sheet (MSDS) for detailed environmental, health, and safety information. MSDSs are available for this kit on the Illumina website at www.illumina.com/msds.
Preparation

- Remove one tube of First Strand Synthesis Act D Mix from -15°C to -25°C storage and thaw it at room temperature.
- Pre-program the thermal cycler with the following program and save as Synthesize 1st Strand:
 - Choose the pre-heat lid option and set to 100°C
 - 25°C for 10 minutes
 - 42°C for 15 minutes
 - 70°C for 15 minutes
 - Hold at 4°C
- Make sure that the microplate shaker is properly calibrated to 1000 rpm using a stroboscope.
- Apply a CDP barcode label to a new 96-well HSP plate.

NOTE
The First Strand Synthesis Mix Act D with SuperScript II added is stable to additional freeze-thaw cycles and can be used for subsequent experiments. If more than six freeze-thaw cycles are anticipated, divide the First Strand Synthesis Mix Act D and SuperScript II mix into smaller aliquots and store at -15°C to -25°C.

Make CDP

1. Remove the adhesive seal from the RFP plate.
2. Place the RFP plate on the magnetic stand at room temperature for 5 minutes. Do not remove the plate from the magnetic stand.
3. Transfer 17 µl supernatant from each well of the RFP plate to the corresponding well of the new HSP plate labeled with the CDP barcode.
4. Centrifuge the thawed First Strand Synthesis Act D Mix tube to 600 x g for 5 seconds.
5. Add 50 µl SuperScript II to the First Strand Synthesis Act D Mix tube. Mix gently, but thoroughly and centrifuge briefly. If you are not using the entire contents of the First Strand Synthesis Act D Mix tube, add SuperScript II at a ratio of 1 µl SuperScript II for each 9 µl First Strand Synthesis Act D Mix.

Label the First Strand Synthesis Act D Mix tube to indicate that the SuperScript II has been added.
6 Add 8 µl of First Strand Synthesis Act D Mix and SuperScript II mix to each well of the CDP plate. Mix thoroughly as follows:
 a Seal the CDP plate with a Microseal ‘B’ adhesive seal.
 b Shake the CDP plate on a microplate shaker continuously at 1,600 rpm for 20 seconds.
7 Return the First Strand Synthesis Act D Mix tube to -15°C to -25°C storage immediately after use.

Incubate 1 CDP

1 Place the sealed CDP plate on the pre-programmed thermal cycler. Close the lid, and then select and run the *Synthesize 1st Strand* program.
 a Choose the pre-heat lid option and set to 100°C
 b 25°C for 10 minutes
 c 42°C for 15 minutes
 d 70°C for 15 minutes
 e Hold at 4°C

2 When the thermal cycler reaches 4°C, remove the CDP plate from the thermal cycler and proceed immediately to *Synthesize Second Strand cDNA* on page 61.
Synthesize Second Strand cDNA

This process removes the RNA template and synthesizes a replacement strand, incorporating dUTP in place of dTTP to generate ds cDNA. The incorporation of dUTP quenches the second strand during amplification, because the polymerase does not incorporate past this nucleotide. AMPure XP beads are used to separate the ds cDNA from the second strand reaction mix. At the end of this process, you have blunt-ended cDNA.

Consumables

<table>
<thead>
<tr>
<th>Item</th>
<th>Quantity</th>
<th>Storage</th>
<th>Supplied By</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Optional) End Repair Control (CTE)</td>
<td>1 tube per 48 reactions</td>
<td>2°C to 8°C</td>
<td>Illumina</td>
</tr>
<tr>
<td>Resuspension Buffer (RSB)</td>
<td>1 tube</td>
<td>2°C to 8°C</td>
<td>Illumina</td>
</tr>
<tr>
<td>Second Strand Marking Master Mix (SMM)</td>
<td>1 tube per 48 reactions</td>
<td>-15°C to -25°C</td>
<td>Illumina</td>
</tr>
<tr>
<td>Barcode labels for:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• ALP (Adapter Ligation Plate)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• CCP (cDNA Clean Up Plate)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• IMP (Insert Modification Plate)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1 label per plate</td>
<td>15°C to 30°C</td>
<td>Illumina</td>
</tr>
<tr>
<td>96-well MIDI Plates</td>
<td>2</td>
<td>15°C to 30°C</td>
<td>User</td>
</tr>
<tr>
<td>AMPure XP Beads</td>
<td>90 µl per sample</td>
<td>2°C to 8°C</td>
<td>User</td>
</tr>
<tr>
<td>Freshly Prepared 80% Ethanol (EtOH)</td>
<td>400 µl per sample</td>
<td>15°C to 30°C</td>
<td>User</td>
</tr>
<tr>
<td>Microseal ‘B’ Adhesive Seals</td>
<td>4</td>
<td>15°C to 30°C</td>
<td>User</td>
</tr>
<tr>
<td>RNase/DNase-free Eight-Tube Strips and Caps (if using multichannel pipettes)</td>
<td>5</td>
<td>15°C to 30°C</td>
<td>User</td>
</tr>
<tr>
<td>RNase/DNase-free Reagent Reservoirs (if using multichannel pipettes)</td>
<td>5</td>
<td>15°C to 30°C</td>
<td>User</td>
</tr>
</tbody>
</table>
Preparation

- Remove the following from -15°C to -25°C storage and thaw them at room temperature:
 - End Repair Control
 - Second Strand Marking Master Mix
- Remove the Resuspension Buffer from 2°C to 8°C storage and bring it to room temperature.
- Remove the AMPure XP beads from storage and let stand for at least 30 minutes to bring them to room temperature.
- Pre-heat the thermal cycler to 16°C.
- Choose the thermal cycler pre-heat lid option and set to 30°C
- Apply an ALP barcode label to a new 96-well MIDI plate.
- Apply a CCP barcode label to a new 96-well MIDI plate.

Add SMM

1. Remove the adhesive seal from the CDP plate.
2. Do one of the following:
 - If using the in-line control reagent:
 - Centrifuge the thawed End Repair Control tube to 600 × g for 5 seconds.
 - Dilute the End Repair Control to 1/50 in Resuspension Buffer (For example, 2 μl End Repair Control + 98 μl Resuspension Buffer) before use. Discard the diluted End Repair Control after use.
 - Add 5 μl of diluted End Repair Control to each well of the CDP plate.
 - If not using the in-line control reagent, add 5 μl of Resuspension Buffer to each well of the CDP plate.
3. Centrifuge the thawed Second Strand Marking Master Mix to 600 × g for 5 seconds.
4 Add 20 µl of thawed Second Strand Marking Master Mix to each well of the CDP plate. Mix thoroughly as follows:
a Seal the CDP plate with a Microseal ‘B’ adhesive seal.
b Shake the CDP plate on a microplate shaker continuously at 1600 rpm for 20 seconds.

5 Return the Second Strand Marking Master Mix tube to -15°C to -25°C storage after use.

Incubate 2 CDP

1 Place the sealed CDP plate on the pre-heated thermal cycler. Close the lid and incubate at 16°C for 1 hour.
2 Remove the CDP plate from the thermal cycler and place it on the bench.
3 Remove the adhesive seal from the CDP plate.
4 Let the CDP plate stand to bring it to room temperature.

Purify CDP

1 Vortex the AMPure XP beads until they are well dispersed.
2 Add 90 µl of well-mixed AMPure XP beads to each well of the new MIDI plate labeled with the CCP barcode.
3 Transfer the entire contents from each well of the CDP plate to the corresponding well of the CCP plate containing AMPure XP beads. Mix thoroughly as follows:
a Seal the CCP plate with a Microseal ‘B’ adhesive seal.
b Shake the CCP plate on a microplate shaker at 1800 rpm for 2 minutes.
4 Incubate the CCP plate at room temperature for 15 minutes.
5 Centrifuge the CCP plate to 280 × g for 1 minute.
6 Remove the adhesive seal from the CCP plate.
7 Place the CCP plate on the magnetic stand at room temperature, for 5 minutes to make sure that all of the beads are bound to the side of the wells.
8 Remove and discard 135 µl supernatant from each well of the CCP plate.
NOTE
Leave the CCP plate on the magnetic stand while performing the following 80% EtOH wash steps (9–11).

9 With the CCP plate on the magnetic stand, add 200 μl freshly prepared 80% EtOH to each well without disturbing the beads.

10 Incubate the CCP plate at room temperature for 30 seconds, and then remove and discard all of the supernatant from each well.

11 Repeat steps 9 and 10 one time for a total of two 80% EtOH washes.

12 Let the CCP plate stand at room temperature for 15 minutes to dry, and then remove the plate from the magnetic stand.

13 Centrifuge the thawed, room temperature Resuspension Buffer to 600 × g for 5 seconds.

14 Add 17.5 μl Resuspension Buffer to each well of the CCP plate. Mix thoroughly as follows:
 a Seal the CCP plate with a Microseal ‘B’ adhesive seal.
 b Shake the CCP plate on a microplate shaker at 1800 rpm for 2 minutes.

15 Incubate the CCP plate at room temperature for 2 minutes.

16 Centrifuge the CCP plate to 280 × g for 1 minute.

17 Remove the adhesive seal from the CCP plate.

18 Place the CCP plate on the magnetic stand at room temperature for 5 minutes.

19 Transfer 15 μl supernatant (ds cDNA) from the CCP plate to the new MIDI plate labeled with the ALP barcode.

SAFE STOPPING POINT
If you do not plan to proceed immediately to Adenylate 3’ Ends on page 65, you can safely stop the protocol here. If you are stopping, seal the ALP plate with a Microseal ‘B’ adhesive seal and store at -15°C to -25°C for up to seven days.
Adenylate 3' Ends

A single ‘A’ nucleotide is added to the 3’ ends of the blunt fragments to prevent them from ligating to one another during the adapter ligation reaction. A corresponding single ‘T’ nucleotide on the 3’ end of the adapter provides a complementary overhang for ligating the adapter to the fragment. This strategy ensures a low rate of chimera (concatenated template) formation.

Consumables

<table>
<thead>
<tr>
<th>Item</th>
<th>Quantity</th>
<th>Storage</th>
<th>Supplied By</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Optional) A-Tailing Control (CTA)</td>
<td>1 tube per 48 reactions</td>
<td>-15°C to -25°C</td>
<td>Illumina</td>
</tr>
<tr>
<td>A-Tailing Mix (ATL)</td>
<td>1 tube per 48 reactions</td>
<td>-15°C to -25°C</td>
<td>Illumina</td>
</tr>
<tr>
<td>Resuspension Buffer (RSB)</td>
<td>1 tube</td>
<td>2°C to 8°C</td>
<td>Illumina</td>
</tr>
<tr>
<td>Ice</td>
<td>As needed to place a plate on</td>
<td>-15°C to -25°C</td>
<td>User</td>
</tr>
<tr>
<td>Microseal ‘B’ Adhesive Seal</td>
<td>1</td>
<td>15°C to 30°C</td>
<td>User</td>
</tr>
<tr>
<td>RNase/DNase-free Eight-Tube Strips and Caps (if using multichannel pipettes)</td>
<td>3</td>
<td>15°C to 30°C</td>
<td>User</td>
</tr>
<tr>
<td>RNase/DNase-free Reagent Reservoirs (if using multichannel pipettes)</td>
<td>3</td>
<td>15°C to 30°C</td>
<td>User</td>
</tr>
</tbody>
</table>
Preparation

- Remove the following from -15°C to -25°C storage and thaw them at room temperature:
 - A-Tailing Control

 NOTE
 The use of the A-Tailing Control is optional and it can be replaced with the same volume of Resuspension Buffer.

 - A-Tailing Mix
- Remove the Resuspension Buffer from 2°C to 8°C storage and bring it to room temperature.
- Remove the ALP plate from -15°C to -25°C storage, if it was stored at the conclusion of Purify CDP on page 63.
 - Let it thaw at room temperature.
 - Centrifuge the thawed ALP plate to 280 × g for 1 minute.
 - Remove the adhesive seal from the ALP plate.
- Pre-heat two microheating systems: system 1 to 37°C and system 2 to 70°C.
- Prepare ice to cool the plate.

Add ATL

1. Do one of the following:
 - If using the in-line control reagent:
 - Centrifuge the thawed A-Tailing Control tube to 600 × g for 5 seconds.
 - Dilute the A-Tailing Control to 1/100 in Resuspension Buffer (For example, 1 μl A-Tailing Control + 99 μl Resuspension Buffer) before use. Discard the diluted A-Tailing Control after use.
 - Add 2.5 μl of diluted A-Tailing Control to each well of the ALP plate.
 - If not using the in-line control reagent, add 2.5 μl of Resuspension Buffer to each well of the ALP plate.

2. Add 12.5 μl of thawed A-Tailing Mix to each well of the ALP plate. Mix thoroughly as follows:
 a. Seal the ALP plate with a Microseal ‘B’ adhesive seal.
 b. Shake the ALP plate on a microplate shaker at 1800 rpm for 2 minutes.

3. Centrifuge the ALP plate to 280 × g for 1 minute.
Incubate 1 ALP

1. Place the sealed ALP plate on the pre-heated microheating system 1. Close the lid and incubate at 37°C for 30 minutes.

2. Immediately after the 37°C incubation, remove the ALP plate from system 1 and place the plate on the pre-heated microheating system 2. Close the lid and incubate at 70°C for 5 minutes.

3. Set the microheating system 1 to 30°C in preparation for *Ligate Adapters*.

4. Immediately remove the ALP plate from the microheating system 2 and place the plate on ice for 1 minute.

5. Proceed immediately to *Ligate Adapters* on page 68.
Ligate Adapters

This process ligates indexing adapters to the ends of the ds cDNA, preparing them for hybridization onto a flow cell.

Consumables

<table>
<thead>
<tr>
<th>Item</th>
<th>Quantity</th>
<th>Storage</th>
<th>Supplied By</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Optional) Ligation Control (CTL)</td>
<td>1 tube per 48 reactions</td>
<td>-15°C to -25°C</td>
<td>Illumina</td>
</tr>
<tr>
<td>Choose from the following depending on the kit you are using:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>* TruSeq Stranded mRNA LT Sample Prep Kit contents:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>* RNA Adapter Indices (AR001–AR016, AR018–AR023, AR025, AR027)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>* TruSeq Stranded mRNA HT Sample Prep Kit contents:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>* RAP (RNA Adapter Plate)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ligation Mix (LIG)</td>
<td>1 tube per 48 reactions</td>
<td>-15°C to -25°C</td>
<td>Illumina</td>
</tr>
<tr>
<td>Resuspension Buffer (RSB)</td>
<td>1 tube</td>
<td>2°C to 8°C</td>
<td>Illumina</td>
</tr>
<tr>
<td>Stop Ligation Buffer (STL)</td>
<td>1 tube per 48 reactions</td>
<td>-15°C to -25°C</td>
<td>Illumina</td>
</tr>
<tr>
<td>Barcode labels for:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>* CAP (Clean Up ALP Plate)</td>
<td>1 label per plate</td>
<td>15°C to 30°C</td>
<td>Illumina</td>
</tr>
<tr>
<td>* PCR (Polymerase Chain Reaction Plate)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>* RAP (RNA Adapter Plate) (if using the HT kit)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Preparation

- Remove the following from -15°C to -25°C storage and thaw them at room temperature:
 - Appropriate RNA Adapter tubes (depending on the RNA Adapter Indices being used) or the RAP.

NOTE

- Review the *TruSeq Sample Preparation Pooling Guide (part # 15042173).* See *Additional Resources* on page 9 for information on how to download the guide from the Illumina website.
- When indexing libraries using adapter index tubes, Illumina recommends arranging samples that are going to be combined into a common pool in the same row. Also, include a common index in each column. This arrangement facilitates pipetting operations when dispensing indexed adapters and pooling indexed libraries later in the protocol.
- When indexing libraries with the RAP, arrange samples that will be pooled together in the same orientation as the indices in the RAP.
NOTE
When indexing libraries with the RAP:
• Review Handling Adapter Plate in the TruSeq Sample Preparation Pooling Guide (part # 15042173). See Additional Resources on page 9 for information on how to download the guide from the Illumina website.
• Illumina recommends that the RAP does not undergo more than four freeze-thaw cycles. To maximize the use of the RAP, process more than 24 samples at a time. These samples can then be pooled in any supported configuration.

• Stop Ligation Buffer

NOTE
Do not remove the Ligation Mix tube from -15°C to -25°C storage until instructed to do so in the procedures.

• Ligation Control

NOTE
The use of the Ligation Control is optional and it can be replaced with the same volume of Resuspension Buffer.

Remove the Resuspension Buffer from 2°C to 8°C storage and bring it to room temperature.
Remove the AMPure XP Beads from storage and let stand for at least 30 minutes to bring them to room temperature.
Pre-heat the microheating system 1 to 30°C.
Apply a CAP barcode label to a new 96-well MIDI plate.
Apply a PCR barcode label to a new 96-well HSP plate.

Add LIG

1. Do one of the following:
 • If using RNA Adapter tubes, centrifuge the thawed tubes to 600 x g for 5 seconds.
 • If using a RAP:
 — Thaw the plate for 10 minutes at room temperature on the benchtop. Visually inspect the wells to make sure that they all are thawed.
 — Remove the adapter plate tape seal.
— Centrifuge the plate to $280 \times g$ for 1 minute to collect all of the adapter to the bottom of the well.
— Remove the plastic cover. Save the cover if you are not processing the entire plate at one time.
— If it is the first time using this RAP, apply the RAP barcode label to the plate.

2 Centrifuge the Ligation Control (if using Ligation Control) and Stop Ligation Buffer tubes to $600 \times g$ for 5 seconds.

3 Immediately before use, remove the Ligation Mix tube from -15°C to -25°C storage.

4 Remove the adhesive seal from the ALP plate.

5 Do one of the following:
 • If using the in-line control reagent:
 — Dilute the Ligation Control to 1/100 in Resuspension Buffer (For example, 1 µl Ligation Control + 99 µl Resuspension Buffer) before use. Discard the diluted Ligation Control after use.
 — Add 2.5 µl of diluted Ligation Control to each well of the ALP plate.
 • If not using the in-line control reagent, add 2.5 µl of Resuspension Buffer to each well of the ALP plate.

6 Add 2.5 µl of Ligation Mix to each well of the ALP plate.

7 Return the Ligation Mix tube to -15°C to -25°C storage immediately after use.

8 Do one of the following:
 • If using RNA Adapter tubes, add 2.5 µl of the thawed RNA Adapter Index to each well of the ALP plate.
 • If using a RAP:
 — Place the RAP on the benchtop so that the part number barcode, on the long side of the plate, is facing you and the clipped corner is on the lower left.

Figure 9 Correct RAP Orientation
— Do one of the following to pierce the foil seal:
 — If using the entire plate at one time, use the bottom of a clean 96-well semi-skirted PCR plate to pierce a hole in all of the well seals simultaneously. Gently, but firmly, press the clean plate over the foil seal.
 — If using only part of the plate, use the bottom of a clean eight-tube strip, with caps attached, to pierce holes in the seals of the wells that will be used for ligation. Repeat with a new, clean eight-tube strip, with caps attached, for each row or column of adapters that will be used for ligation.
 — Using an eight-tip multichannel pipette, transfer 2.5 μl of the appropriate thawed RNA Adapter from the RAP well to each well of the ALP plate.

9 Mix thoroughly as follows:
 a Seal the ALP plate with a Microseal ‘B’ adhesive seal.
 b Shake the ALP plate on a microplate shaker at 1800 rpm for 2 minutes.

10 Centrifuge the ALP plate to 280 × g for 1 minute.

Incubate 2 ALP

1 Place the sealed ALP plate on the pre-heated microheating system. Close the lid and incubate at 30°C for 10 minutes.

2 Remove the ALP plate from the microheating system.

Add STL

1 Remove the adhesive seal from the ALP plate.

2 Add 5 μl of Stop Ligation Buffer to each well of the ALP plate to inactivate the ligation mix. Mix thoroughly as follows:
 a Seal the ALP plate with a Microseal ‘B’ adhesive seal.
 b Shake the ALP plate on a microplate shaker at 1800 rpm for 2 minutes.

3 Centrifuge the ALP plate to 280 × g for 1 minute.

Clean Up ALP

1 Remove the adhesive seal from the ALP plate.

2 Vortex the AMPure XP Beads for at least 1 minute or until they are well dispersed.
3 Add 42 μl of mixed AMPure XP Beads to each well of the ALP plate. Mix thoroughly as follows:
 a Seal the ALP plate with a Microseal ‘B’ adhesive seal.
 b Shake the ALP plate on a microplate shaker at 1800 rpm for 2 minutes.
4 Incubate the ALP plate at room temperature for 15 minutes.
5 Centrifuge the ALP plate to 280 × g for 1 minute.
6 Remove the adhesive seal from the ALP plate.
7 Place the ALP plate on the magnetic stand at room temperature for 5 minutes or until the liquid is clear.
8 Remove and discard 79.5 μl supernatant from each well of the ALP plate. Take care not to disturb the beads.
 NOTE
 Leave the ALP plate on the magnetic stand while performing the following 80% EtOH wash steps (9–11).
9 With the ALP plate on the magnetic stand, add 200 μl freshly prepared 80% EtOH to each well without disturbing the beads.
10 Incubate the ALP plate at room temperature for 30 seconds, and then remove and discard all of the supernatant from each well. Take care not to disturb the beads.
11 Repeat steps 9 and 10 one time for a total of two 80% EtOH washes.
12 With the ALP plate on the magnetic stand, let the samples air-dry at room temperature for 15 minutes.
13 Remove the ALP plate from the magnetic stand.
14 Add 52.5 μl Resuspension Buffer to each well of the ALP plate. Mix thoroughly as follows:
 a Seal the ALP plate with a Microseal ‘B’ adhesive seal.
 b Shake the ALP plate on a microplate shaker at 1800 rpm for 2 minutes.
15 Incubate the ALP plate at room temperature for 2 minutes.
16 Centrifuge the ALP plate to 280 × g for 1 minute.
17 Remove the adhesive seal from the ALP plate.
18 Place the ALP plate on the magnetic stand at room temperature for 5 minutes or until the liquid is clear.

19 Transfer 50 µl supernatant from each well of the ALP plate to the corresponding well of the new MIDI plate labeled with the CAP barcode. Take care not to disturb the beads.

20 Vortex the AMPure XP Beads until they are well dispersed.

21 Add 50 µl of mixed AMPure XP Beads to each well of the CAP plate for a second cleanup. Mix thoroughly as follows:
 a Seal the CAP plate with a Microseal ‘B’ adhesive seal.
 b Shake the CAP plate on a microplate shaker at 1800 rpm for 2 minutes.

22 Incubate the CAP plate at room temperature for 15 minutes.

23 Centrifuge the CAP plate to 280 × g for 1 minute.

24 Remove the adhesive seal from the CAP plate.

25 Place the CAP plate on the magnetic stand at room temperature for 5 minutes or until the liquid is clear.

26 Remove and discard 95 µl supernatant from each well of the CAP plate. Take care not to disturb the beads.

 NOTE
 Leave the CAP plate on the magnetic stand while performing the following 80% EtOH wash steps (27–29)

27 With the CAP plate on the magnetic stand, add 200 µl freshly prepared 80% EtOH to each well. Take care not to disturb the beads.

28 Incubate the CAP plate at room temperature for 30 seconds, and then remove and discard all of the supernatant from each well. Take care not to disturb the beads.

29 Repeat steps 27 and 28 one time for a total of two 80% EtOH washes.

30 With the CAP plate on the magnetic stand, let the samples air-dry at room temperature for 15 minutes.

31 Remove the CAP plate from the magnetic stand.

32 Add 22.5 µl Resuspension Buffer to each well of the CAP plate. Mix thoroughly as follows:
 a Seal the CAP plate with a Microseal ‘B’ adhesive seal.
 b Shake the CAP plate on a microplate shaker at 1800 rpm for 2 minutes.
33 Incubate the CAP plate at room temperature for 2 minutes.
34 Centrifuge the CAP plate to 280 × g for 1 minute.
35 Remove the adhesive seal from the CAP plate.
36 Place the CAP plate on the magnetic stand at room temperature for 5 minutes or until the liquid is clear.
37 Transfer 20 µl supernatant from each well of the CAP plate to the corresponding well of the new HSP plate labeled with the PCR barcode. Take care not to disturb the beads.

SAFE STOPPING POINT
If you do not plan to proceed immediately to Enrich DNA Fragments on page 76, you can safely stop the protocol here. If you are stopping, seal the PCR plate with a Microseal ‘B’ adhesive seal and store at -15°C to -25°C for up to seven days.
Enrich DNA Fragments

This process uses PCR to selectively enrich those DNA fragments that have adapter molecules on both ends and to amplify the amount of DNA in the library. The PCR is performed with a PCR Primer Cocktail that anneals to the ends of the adapters. Minimize the number of PCR cycles to avoid skewing the representation of the library.

NOTE
PCR enriches for fragments that have adapters ligated on both ends. Fragments with only one or no adapters on their ends are by-products of inefficiencies in the ligation reaction. Neither species can be used to make clusters. Fragments without any adapters cannot hybridize to surface-bound primers in the flow cell. Fragments with an adapter on only one end can hybridize to surface bound primers, but cannot form clusters.

Consumables

<table>
<thead>
<tr>
<th>Item</th>
<th>Quantity</th>
<th>Storage</th>
<th>Supplied By</th>
</tr>
</thead>
<tbody>
<tr>
<td>PCR Master Mix (PMM)</td>
<td>1 tube per 48 reactions</td>
<td>-15°C to -25°C</td>
<td>Illumina</td>
</tr>
<tr>
<td>PCR Primer Cocktail (PPC)</td>
<td>1 tube per 48 reactions</td>
<td>-15°C to -25°C</td>
<td>Illumina</td>
</tr>
<tr>
<td>Resuspension Buffer (RSB)</td>
<td>1 tube</td>
<td>2°C to 8°C</td>
<td>Illumina</td>
</tr>
<tr>
<td>Barcode labels for:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• CPP (Clean Up PCR Plate) barcode label</td>
<td>1 label per plate</td>
<td>15°C to 30°C</td>
<td>Illumina</td>
</tr>
<tr>
<td>• TSP1 (Target Sample Plate) barcode label</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>96-well HSP Plate</td>
<td>1</td>
<td>15°C to 30°C</td>
<td>User</td>
</tr>
<tr>
<td>96-well MIDI Plate</td>
<td>1</td>
<td>15°C to 30°C</td>
<td>User</td>
</tr>
<tr>
<td>AMPure XP Beads</td>
<td>50 µl per sample</td>
<td>2°C to 8°C</td>
<td>User</td>
</tr>
<tr>
<td>Freshly Prepared 80% Ethanol (EtOH)</td>
<td>400 µl per sample</td>
<td>15°C to 30°C</td>
<td>User</td>
</tr>
<tr>
<td>Item</td>
<td>Quantity</td>
<td>Storage</td>
<td>Supplied By</td>
</tr>
<tr>
<td>--</td>
<td>----------</td>
<td>-----------------</td>
<td>-------------</td>
</tr>
<tr>
<td>Microseal ‘A’ Film</td>
<td>1</td>
<td>15°C to 30°C</td>
<td>User</td>
</tr>
<tr>
<td>Microseal ‘B’ Adhesive Seals</td>
<td>3</td>
<td>15°C to 30°C</td>
<td>User</td>
</tr>
<tr>
<td>RNase/DNase-free Eight-Tube Strips and Caps (if using multichannel pipettes)</td>
<td>5</td>
<td>15°C to 30°C</td>
<td>User</td>
</tr>
<tr>
<td>RNase/DNase-free Reagent Reservoirs (if using multichannel pipettes)</td>
<td>5</td>
<td>15°C to 30°C</td>
<td>User</td>
</tr>
</tbody>
</table>

Preparation

- Remove the PCR Master Mix and PCR Primer Cocktail from -15°C to -25°C storage and thaw them at room temperature.
- Centrifuge the thawed PCR Master Mix and PCR Primer Cocktail tubes to 600 × g for 5 seconds.
- Remove the Resuspension Buffer from 2°C to 8°C storage and bring it to room temperature.
- Remove the AMPure XP Beads from 2°C to 8°C storage and let stand for at least 30 minutes to bring them to room temperature.
- Remove the PCR plate from -15°C to -25°C storage, if it was stored at the conclusion of *Clean Up ALP* on page 72.
 - Let it thaw at room temperature.
 - Centrifuge the thawed PCR plate to 280 × g for 1 minute.
 - Remove the adhesive seal from the thawed PCR plate.
Pre-program the thermal cycler with the following program and save as **PCR**:
- Choose the pre-heat lid option and set to 100°C
- 98°C for 30 seconds
- 15 cycles of:
 - 98°C for 10 seconds
 - 60°C for 30 seconds
 - 72°C for 30 seconds
- 72°C for 5 minutes
- Hold at 4°C

Apply a CPP barcode label to a new 96-well MIDI plate.
Apply a TSP1 barcode label to a new 96-well 0.3 ml PCR plate.

Make PCR

1. Add 5 µl of thawed PCR Primer Cocktail to each well of the PCR plate.
2. Add 25 µl of thawed PCR Master Mix to each well of the PCR plate.
 a. Seal the PCR plate with a Microseal ‘A’ film.

WARNING
Follow vendor instructions for applying Microseal “A” sealing films. Improper use could lead to inefficient sealing (evaporation of sample or cross-contamination) or too efficient sealing (parts of the seal remain in the well after removing the whole seal).

 b. Shake the PCR plate on a microplate shaker at 1600 rpm for 20 seconds.
3. Centrifuge the PCR plate to 280 × g for 1 minute.

Amp PCR

1. Place the sealed PCR plate on the pre-programmed thermal cycler. Close the lid, then select and run **PCR** to amplify the plate.
 a. Choose the pre-heat lid option and set to 100°C
 b. 98°C for 30 seconds
 c. 15 cycles of:
 - 98°C for 10 seconds
 - 60°C for 30 seconds
 - 72°C for 30 seconds
d 72°C for 5 minutes

Clean Up PCR

1 Remove the adhesive seal from the PCR plate.
2 Vortex the AMPure XP Beads until they are well dispersed.
3 Do one of the following, depending on the adapter type used:
 • If using the RNA Adapter tubes, add 50 µl of the mixed AMPure XP Beads to each
 well of the new MIDI plate labeled with the CPP barcode.
 • If using the RAP, add 47.5 µl of the mixed AMPure XP Beads to each well of the
 new MIDI plate labeled with the CPP barcode.
4 Transfer the entire contents from each well of the PCR plate to the corresponding well
 of the CPP plate containing 50 µl of mixed AMPure XP Beads. Mix thoroughly as
 follows:
 a Seal the CPP plate with a Microseal ‘B’ adhesive seal.
 b Shake the CPP plate on a microplate shaker at 1800 rpm for 2 minutes.
5 Incubate the CPP plate at room temperature for 15 minutes.
6 Centrifuge the CPP plate to 280 × g for 1 minute.
7 Remove the adhesive seal from the CPP plate.
8 Place the CPP plate on the magnetic stand at room temperature for 5 minutes or until
 the liquid is clear.
9 Remove and discard 95 µl supernatant from each well of the CPP plate.

 NOTE
 Leave the CPP plate on the magnetic stand while performing the following 80% EtOH
 wash steps (10–12).
10 With the CPP plate on the magnetic stand, add 200 µl freshly prepared 80% EtOH to
 each well without disturbing the beads.
11 Incubate the CPP plate at room temperature for 30 seconds, and then remove and
 discard all of the supernatant from each well.
12 Repeat steps 10 and 11 one time for a total of two 80% EtOH washes.
13 With the CPP plate on the magnetic stand, let the samples air-dry at room temperature for 15 minutes, and then remove the plate from the magnetic stand.

14 Add 32.5 µl Resuspension Buffer to each well of the CPP plate. Mix thoroughly as follows:
 a Seal the CPP plate with a Microseal ‘B’ adhesive seal.
 b Shake the CPP plate on a microplate shaker at 1800 rpm for 2 minutes.

15 Incubate the CPP plate at room temperature for 2 minutes.

16 Centrifuge the CPP plate to 280 × g for 1 minute.

17 Remove the adhesive seal from the CPP plate.

18 Place the CPP plate on the magnetic stand at room temperature for 5 minutes or until the liquid is clear.

19 Transfer 30 µl supernatant from each well of the CPP plate to the corresponding well of the new HSP plate labeled with the TSP1 barcode.

SAFE STOPPING POINT
If you do not plan to proceed immediately to Validate Library on page 81, you can safely stop the protocol here. If you are stopping, seal the TSP1 plate with a Microseal ‘B’ adhesive seal and store at -15°C to -25°C for up to 7 days.
Validate Library

Illumina recommends performing the following procedures for quality control analysis on your sample library and quantification of the DNA library templates.

Quantify Libraries

To achieve the highest quality data on Illumina sequencing platforms, it is important to create optimum cluster densities across every lane of the flow cell. Optimizing cluster densities requires accurate quantitation of DNA library templates. Quantify your libraries using qPCR according to the Illumina Sequencing Library qPCR Quantification Guide (part # 11322363).

Quality Control

1. Load 1 μl of the resuspended construct on an Agilent Technologies 2100 Bioanalyzer using a DNA-specific chip such as the Agilent DNA 1000.

2. Check the size and purity of the sample. The final product should be a band at approximately 260 bp.

Figure 10 Example of TruSeq Stranded mRNA Sample Preparation Library Size Distribution
Normalize and Pool Libraries

This process describes how to prepare DNA templates for cluster generation. Indexed DNA libraries are normalized to 10 nM in the DCT plate and then pooled in equal volumes in the PDP plate. DNA libraries not intended for pooling are normalized to 10 nM in the DCT plate.

Consumables

<table>
<thead>
<tr>
<th>Item</th>
<th>Quantity</th>
<th>Storage</th>
<th>Supplied By</th>
</tr>
</thead>
</table>
| Barcode labels for:
- DCT (Diluted Cluster Template)
- PDP (Pooled DCT Plate)
(for pooling only) | 1 label per plate | 15°C to 30°C | Illumina |
| 96-well HSP Plate
(for pooling only) | 1 | 15°C to 30°C | User |
| 96-well MIDI Plate | 1 | 15°C to 30°C | User |
| Microseal ‘B’ Adhesive Seals | 5 | 15°C to 30°C | User |
| Tris-HCl 10 mM, pH8.5 with 0.1% Tween 20 | Enough to normalize the concentration of each sample library to 10 nM | 15°C to 30°C | User |

Preparation

- Remove the TSP1 plate from -15°C to -25°C storage, if it was stored at the conclusion of Clean Up PCR on page 79.
 - Let it thaw at room temperature.
 - Centrifuge the thawed TSP1 plate to 280 × g for 1 minute.
 - Remove the adhesive seal from the thawed TSP1 plate.
- Apply a DCT barcode label to a new 96-well MIDI plate.
- [For pooling only] Apply a PDP barcode label to a new 96-well HSP plate.
Make DCT

1. Transfer 10 µl of sample library from each well of the TSP1 plate to the corresponding well of the new MIDI plate labeled with the DCT barcode.

2. Normalize the concentration of sample library in each well of the DCT plate to 10 nM using Tris-HCl 10 mM, pH 8.5 with 0.1% Tween 20.

 NOTE
 Depending on the yield quantification data of each sample library, the final volume in the DCT plate can vary from 10–400 µl.

3. Mix the DCT plate as follows:
 a. Seal the DCT plate with a Microseal ‘B’ adhesive seal.
 b. Shake the DCT plate on a microplate shaker at 1000 rpm for 2 minutes.

4. Centrifuge the DCT plate to 280 × g for 1 minute.

5. Remove the adhesive seal from the DCT plate.

6. Depending on the type of library you want to generate, do one of the following:
 - For non-pooled libraries, the protocol stops here. Do one of the following:
 - Proceed to cluster generation. For more information, see the cluster generation section of the user guide for your Illumina platform.
 - Seal the DCT plate with a Microseal ‘B’ adhesive seal and store at -15°C to -25°C.
 - For pooled libraries, proceed to *Make PDP (for pooling only)*.

Make PDP (for pooling only)

1. Determine the number of samples to be combined together for each pool.

 NOTE
 Do not make a PDP plate if you are not pooling samples.

 NOTE
 Make a note of which sample goes into which well, to avoid pooling two samples with the same index.
2 Do one of the following:
 • If pooling 2–24 samples:
 — Transfer 10 µl of each normalized sample library to be pooled from the DCT plate to one well of the new HSP plate labeled with the PDP barcode.
 — The total volume in each well of the PDP plate should be 10X the number of combined sample libraries and 20–240 µl (2–24 libraries). For example, the volume for 2 samples is 20 µl, the volume for 12 samples is 120 µl, or the volume for 24 samples is 240 µl.
 • If pooling 25–96 samples:
 — Using a multichannel pipette, transfer 5 µl of each normalized sample library in column 1 from the DCT plate to column 1 of the new HSP plate labeled with the PDP barcode.
 — Transfer 5 µl of each normalized sample library in column 2 from the DCT plate to column 1 of the PDP plate.
 — Repeat the transfer for as many times as there are remaining columns in the DCT plate. The result is a PDP plate with pooled samples in column 1. Mix the PDP plate as follows:
 — Seal the PDP plate with a Microseal ‘B’ adhesive seal.
 — Shake the PDP plate on a microplate shaker at 1800 rpm for 2 minutes.
 — Centrifuge the PDP plate to 280 × g for 1 minute.
 — Remove the adhesive seal from the PDP plate.
 — Combine the contents of each well of column 1 into well A2 of the PDP plate for the final pool.

3 Mix the PDP plate as follows:
 a Seal the PDP plate with a Microseal ‘B’ adhesive seal.
 b Shake the PDP plate on a microplate shaker at 1800 rpm for 2 minutes.

4 Centrifuge the PDP plate to 280 × g for 1 minute.

5 Do one of the following:
 • Proceed to cluster generation. For more information, see the cluster generation section of the user guide for your Illumina platform.
 • Store the sealed PDP plate at -15°C to -25°C.
Supporting Information

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction</td>
<td>88</td>
</tr>
<tr>
<td>Acronyms</td>
<td>89</td>
</tr>
<tr>
<td>Kit Contents</td>
<td>91</td>
</tr>
<tr>
<td>Consumables and Equipment</td>
<td>100</td>
</tr>
<tr>
<td>Indexed Adapter Sequences</td>
<td>103</td>
</tr>
</tbody>
</table>
Introduction

The protocols described in this guide assume that you have reviewed the contents of this appendix, confirmed your kit contents, and obtained all of the requisite consumables and equipment.
Table 9 TruSeq Stranded mRNA Sample Preparation Acronyms

<table>
<thead>
<tr>
<th>Acronym</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALP</td>
<td>Adapter Ligation Plate</td>
</tr>
<tr>
<td>ATL</td>
<td>A-Tailing Mix</td>
</tr>
<tr>
<td>BBB</td>
<td>Bead Binding Buffer</td>
</tr>
<tr>
<td>BWB</td>
<td>Bead Washing Buffer</td>
</tr>
<tr>
<td>CAP</td>
<td>Clean Up ALP Plate</td>
</tr>
<tr>
<td>CCP</td>
<td>cDNA Clean Up Plate</td>
</tr>
<tr>
<td>cDNA</td>
<td>Complementary DNA</td>
</tr>
<tr>
<td>CDP</td>
<td>cDNA Plate</td>
</tr>
<tr>
<td>CPP</td>
<td>Clean Up PCR Plate</td>
</tr>
<tr>
<td>CTA</td>
<td>A-Tailing Control</td>
</tr>
<tr>
<td>CTE</td>
<td>End Repair Control</td>
</tr>
<tr>
<td>CTL</td>
<td>Ligation Control</td>
</tr>
<tr>
<td>DCT</td>
<td>Diluted Cluster Template</td>
</tr>
<tr>
<td>ds cDNA</td>
<td>Double-Stranded Complimentary DNA</td>
</tr>
<tr>
<td>ELB</td>
<td>Elution Buffer</td>
</tr>
<tr>
<td>EUC</td>
<td>Experienced User Card</td>
</tr>
<tr>
<td>FPF</td>
<td>Fragment, Prime, Finish Mix</td>
</tr>
<tr>
<td>FSA</td>
<td>First Strand Synthesis Act D Mix</td>
</tr>
<tr>
<td>Acronym</td>
<td>Definition</td>
</tr>
<tr>
<td>---------</td>
<td>---------------------------------</td>
</tr>
<tr>
<td>HSP</td>
<td>Hardshell Plate</td>
</tr>
<tr>
<td>HS</td>
<td>High Sample</td>
</tr>
<tr>
<td>HT</td>
<td>High Throughput</td>
</tr>
<tr>
<td>IEM</td>
<td>Illumina Experiment Manager</td>
</tr>
<tr>
<td>LIG</td>
<td>Ligation Mix</td>
</tr>
<tr>
<td>LS</td>
<td>Low Sample</td>
</tr>
<tr>
<td>LT</td>
<td>Low Throughput</td>
</tr>
<tr>
<td>LTF</td>
<td>Lab Tracking Form</td>
</tr>
<tr>
<td>PCR</td>
<td>Polymerase Chain Reaction</td>
</tr>
<tr>
<td>PDP</td>
<td>Pooled Dilution Plate</td>
</tr>
<tr>
<td>PMM</td>
<td>PCR Master Mix</td>
</tr>
<tr>
<td>PPC</td>
<td>PCR Primer Cocktail</td>
</tr>
<tr>
<td>RAP</td>
<td>RNA Adapter Plate</td>
</tr>
<tr>
<td>RBP</td>
<td>RNA Bead Plate</td>
</tr>
<tr>
<td>RFP</td>
<td>RNA Fragmentation Plate</td>
</tr>
<tr>
<td>RPB</td>
<td>RNA Purification Beads</td>
</tr>
<tr>
<td>RSB</td>
<td>Resuspension Buffer</td>
</tr>
<tr>
<td>SMM</td>
<td>Second Strand Marking Master Mix</td>
</tr>
<tr>
<td>STL</td>
<td>Stop Ligation Buffer</td>
</tr>
<tr>
<td>TSP</td>
<td>Target Sample Plate</td>
</tr>
</tbody>
</table>
Check to make sure that you have all of the reagents identified in this section before starting the TruSeq Stranded mRNA Sample Preparation protocol. The TruSeq Stranded mRNA LT Sample Prep Kits are available as Set A and B. Each TruSeq Stranded mRNA LT Sample Prep Kit contains enough reagents to prepare up to 24 samples. When used together, TruSeq Stranded mRNA LT Sample Prep Kits A and B allow for pooling up to 24 samples using the 12 different indices in each kit.

<table>
<thead>
<tr>
<th>Kit Name</th>
<th>Catalog #</th>
<th>Number of Samples Supported</th>
<th>Number of Indices</th>
</tr>
</thead>
<tbody>
<tr>
<td>TruSeq Stranded mRNA LT Sample Prep Kit - Set A</td>
<td>RS-122-2101</td>
<td>48</td>
<td>12</td>
</tr>
<tr>
<td>TruSeq Stranded mRNA LT Sample Prep Kit - Set B</td>
<td>RS-122-2102</td>
<td>48</td>
<td>12</td>
</tr>
<tr>
<td>TruSeq Stranded mRNA HT Sample Prep Kit</td>
<td>RS-122-2103</td>
<td>96</td>
<td>96</td>
</tr>
</tbody>
</table>

TruSeq Stranded mRNA LT Sample Prep Kit

- The TruSeq Stranded mRNA LT Sample Prep Kit contains four boxes: an A or B box, Box 1, Box 2, and a cDNA Synthesis PCR box.

48 Samples, 12 Index Set A and B

- You receive either box A or B in the kit, depending on the set ordered.

Store at -15°C to -25°C

- These boxes are shipped on dry ice. As soon as you receive your kit, store the following components at -15°C to -25°C.
Set A

Figure 12 TruSeq Stranded mRNA LT Sample Prep Kit 48 Samples, 12 Index Set A, part # 15032612

<table>
<thead>
<tr>
<th>Slot</th>
<th>Reagent</th>
<th>Part #</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>LIG</td>
<td>15026773</td>
<td>Ligation Mix</td>
</tr>
<tr>
<td>2</td>
<td>ATL</td>
<td>15012495</td>
<td>A-Tailing Mix</td>
</tr>
<tr>
<td>3</td>
<td>STL</td>
<td>15012546</td>
<td>Stop Ligation Buffer</td>
</tr>
<tr>
<td>4</td>
<td>AR013</td>
<td>15024655</td>
<td>RNA Adapter Index 13</td>
</tr>
<tr>
<td>5</td>
<td>AR014</td>
<td>15024656</td>
<td>RNA Adapter Index 14</td>
</tr>
<tr>
<td>6</td>
<td>AR015</td>
<td>15024657</td>
<td>RNA Adapter Index 15</td>
</tr>
<tr>
<td>7</td>
<td>AR016</td>
<td>15024658</td>
<td>RNA Adapter Index 16</td>
</tr>
<tr>
<td>8</td>
<td>AR018</td>
<td>15024660</td>
<td>RNA Adapter Index 18</td>
</tr>
<tr>
<td>9</td>
<td>AR019</td>
<td>15024661</td>
<td>RNA Adapter Index 19</td>
</tr>
<tr>
<td>10</td>
<td>AR002</td>
<td>15026634</td>
<td>RNA Adapter Index 2</td>
</tr>
<tr>
<td>11</td>
<td>AR004</td>
<td>15026636</td>
<td>RNA Adapter Index 4</td>
</tr>
<tr>
<td>12</td>
<td>AR005</td>
<td>15026637</td>
<td>RNA Adapter Index 5</td>
</tr>
<tr>
<td>13</td>
<td>AR006</td>
<td>15026638</td>
<td>RNA Adapter Index 6</td>
</tr>
<tr>
<td>14</td>
<td>AR007</td>
<td>15026640</td>
<td>RNA Adapter Index 7</td>
</tr>
<tr>
<td>15</td>
<td>AR012</td>
<td>15026645</td>
<td>RNA Adapter Index 12</td>
</tr>
<tr>
<td>16</td>
<td>RSB</td>
<td>15026770</td>
<td>Resuspension Buffer</td>
</tr>
<tr>
<td>17</td>
<td>CTE</td>
<td>15026774</td>
<td>End Repair Control</td>
</tr>
<tr>
<td>18</td>
<td>CTA</td>
<td>15026775</td>
<td>A-Tailing Control</td>
</tr>
<tr>
<td>19</td>
<td>CTL</td>
<td>15026776</td>
<td>Ligation Control</td>
</tr>
</tbody>
</table>
Set B

Figure 13 TruSeq Stranded mRNA LT Sample Prep Kit 48 Samples, 12 Index Set B, part # 15032613

<table>
<thead>
<tr>
<th>Slot</th>
<th>Reagent</th>
<th>Part #</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>ATL</td>
<td>15012495</td>
<td>A-Tailing Mix</td>
</tr>
<tr>
<td>2</td>
<td>STL</td>
<td>15012546</td>
<td>Stop Ligation Buffer</td>
</tr>
<tr>
<td>3</td>
<td>AR020</td>
<td>15024662</td>
<td>RNA Adapter Index 20</td>
</tr>
<tr>
<td>4</td>
<td>AR021</td>
<td>15024663</td>
<td>RNA Adapter Index 21</td>
</tr>
<tr>
<td>5</td>
<td>AR022</td>
<td>15024664</td>
<td>RNA Adapter Index 22</td>
</tr>
<tr>
<td>6</td>
<td>AR023</td>
<td>15024665</td>
<td>RNA Adapter Index 23</td>
</tr>
<tr>
<td>7</td>
<td>AR025</td>
<td>15024666</td>
<td>RNA Adapter Index 25</td>
</tr>
<tr>
<td>8</td>
<td>AR027</td>
<td>15024668</td>
<td>RNA Adapter Index 27</td>
</tr>
<tr>
<td>9</td>
<td>AR001</td>
<td>15026633</td>
<td>RNA Adapter Index 1</td>
</tr>
<tr>
<td>10</td>
<td>AR003</td>
<td>15026635</td>
<td>RNA Adapter Index 3</td>
</tr>
<tr>
<td>11</td>
<td>AR008</td>
<td>15026641</td>
<td>RNA Adapter Index 8</td>
</tr>
<tr>
<td>12</td>
<td>AR009</td>
<td>15026642</td>
<td>RNA Adapter Index 9</td>
</tr>
<tr>
<td>13</td>
<td>AR010</td>
<td>15026643</td>
<td>RNA Adapter Index 10</td>
</tr>
<tr>
<td>14</td>
<td>AR011</td>
<td>15026644</td>
<td>RNA Adapter Index 11</td>
</tr>
<tr>
<td>15</td>
<td>RSB</td>
<td>15026770</td>
<td>Resuspension Buffer</td>
</tr>
<tr>
<td>16</td>
<td>LIG</td>
<td>15026773</td>
<td>Ligation Mix</td>
</tr>
<tr>
<td>17</td>
<td>CTE</td>
<td>15026774</td>
<td>End Repair Control</td>
</tr>
<tr>
<td>18</td>
<td>CTA</td>
<td>15026775</td>
<td>A-Tailing Control</td>
</tr>
<tr>
<td>19</td>
<td>CTL</td>
<td>15026776</td>
<td>Ligation Control</td>
</tr>
</tbody>
</table>
48 Samples, Box 1 of 2

Store as specified

This box is shipped on refrigerated gel packs. As soon as you receive it, store the components as specified.

![Image of 48 sample tubes]

Figure 14 TruSeq Stranded mRNA LT Sample Prep Kit 48 Samples, (Box 1 of 2), part # 15027078

<table>
<thead>
<tr>
<th>Slot</th>
<th>Reagent</th>
<th>Part #</th>
<th>Description</th>
<th>Storage Temperature</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>RPB</td>
<td>15026778</td>
<td>RNA Purification Beads</td>
<td>2°C to 8°C</td>
</tr>
<tr>
<td>2</td>
<td>DTE</td>
<td>15026766</td>
<td>CTE Dilution Tube</td>
<td>Room Temperature</td>
</tr>
<tr>
<td>3</td>
<td>DTA</td>
<td>15026805</td>
<td>CTA Dilution Tube</td>
<td>Room Temperature</td>
</tr>
<tr>
<td>4</td>
<td>DTL</td>
<td>15026807</td>
<td>CTL Dilution Tube</td>
<td>Room Temperature</td>
</tr>
</tbody>
</table>
48 Samples, Box 2 of 2

Store as specified
This box is shipped on dry ice. As soon as you receive it, store the following components as specified.

Figure 15 TruSeq Stranded mRNA LT Sample Prep Kit 48 Samples, (Box 2 of 2), part # 15032614

<table>
<thead>
<tr>
<th>Slot</th>
<th>Reagent</th>
<th>Part #</th>
<th>Description</th>
<th>Storage Temperature</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>BWB</td>
<td>15012925</td>
<td>Bead Washing Buffer</td>
<td>2°C to 8°C</td>
</tr>
<tr>
<td>2</td>
<td>BBB</td>
<td>15026779</td>
<td>Bead Binding Buffer</td>
<td>2°C to 8°C</td>
</tr>
<tr>
<td>3</td>
<td>ELB</td>
<td>15026780</td>
<td>Elution Buffer</td>
<td>2°C to 8°C</td>
</tr>
<tr>
<td>4</td>
<td>FPF</td>
<td>15032067</td>
<td>Fragment, Prime, Finish Mix</td>
<td>-15°C to -25°C</td>
</tr>
</tbody>
</table>

48 Samples, cDNA Synthesis PCR Box

Store at -15°C to -25°C
This box is shipped on dry ice. As soon as you receive it, store the following components at -15°C to -25°C.

Figure 16 TruSeq Stranded mRNA LT Sample Prep Kit, 48 Samples, cDNA Synthesis PCR Box, part # 15032611
TruSeq Stranded mRNA HT Sample Prep Kit

The TruSeq Stranded mRNA HT Sample Prep Kit contains five boxes: a core reagent box, a cDNA Synthesis- PCR box, an Adapter Plate box, and a Box 1 and Box 2.

96 Samples, Core Box

Store at -15°C to -25°C

This box is shipped on dry ice. As soon as you receive it, store the following components at -15°C to -25°C.

![Diagram of 96 Samples, Core Box](image-url)

<table>
<thead>
<tr>
<th>Slot</th>
<th>Reagent</th>
<th>Part #</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1–2</td>
<td>RSB</td>
<td>15026770</td>
<td>Resuspension Buffer</td>
</tr>
<tr>
<td>3–4</td>
<td>ATL</td>
<td>15012495</td>
<td>A-Tailing Mix</td>
</tr>
<tr>
<td>5–6</td>
<td>LIG</td>
<td>15026773</td>
<td>Ligation Mix</td>
</tr>
<tr>
<td>7–8</td>
<td>CTE</td>
<td>15026774</td>
<td>End Repair Control</td>
</tr>
<tr>
<td>9–10</td>
<td>CTA</td>
<td>15026775</td>
<td>A-Tailing Control</td>
</tr>
<tr>
<td>11–12</td>
<td>CTL</td>
<td>15026776</td>
<td>Ligation Control</td>
</tr>
<tr>
<td>13–14</td>
<td>STL</td>
<td>15012546</td>
<td>Stop Ligation Buffer</td>
</tr>
</tbody>
</table>
96 Samples, cDNA Synthesis-PCR Box

Store at -15°C to -25°C

This box is shipped on dry ice. As soon as you receive it, store the following components at -15°C to -25°C.

Figure 18 TruSeq Stranded mRNA HT Sample Prep Kit, 96 Samples, cDNA Synthesis-PCR Box, part # 15032621

<table>
<thead>
<tr>
<th>Slot</th>
<th>Reagent</th>
<th>Part #</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1–2</td>
<td>PMM</td>
<td>15026785</td>
<td>PCR Master Mix</td>
</tr>
<tr>
<td>3–4</td>
<td>PPC</td>
<td>15031748</td>
<td>PCR Primer Cocktail</td>
</tr>
<tr>
<td>5–6</td>
<td>FSA</td>
<td>15031094</td>
<td>First Strand Synthesis Act D Mix</td>
</tr>
<tr>
<td>7–8</td>
<td>SMM</td>
<td>15031098</td>
<td>Second Strand Marking Master Mix</td>
</tr>
</tbody>
</table>

96 Samples- Adapter Plate Box

Store at -15°C to -25°C

This box is shipped on dry ice. As soon as you receive it, store the contents at -15°C to -25°C.

Figure 19 TruSeq Stranded mRNA HT Sample Prep Kit, 96, Adapter Plate Box, part # 15032622

<table>
<thead>
<tr>
<th>Slot</th>
<th>Reagent</th>
<th>Part #</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>RAP</td>
<td>15016427</td>
<td>RNA Adapter Plate, 96plex</td>
</tr>
</tbody>
</table>
96 Samples, Box 1 of 2

Store as specified
This box is shipped on refrigerated gel packs. As soon as you receive it, store the components as specified.

Figure 20 TruSeq Stranded mRNA HT Sample Prep Kit, 96 Samples, (Box 1 of 2), part # 15032624

<table>
<thead>
<tr>
<th>Slot</th>
<th>Reagent</th>
<th>Part #</th>
<th>Description</th>
<th>Storage Temperature</th>
</tr>
</thead>
<tbody>
<tr>
<td>1–2</td>
<td>RPB</td>
<td>15026778</td>
<td>RNA Purification Beads</td>
<td>2°C to 8°C</td>
</tr>
<tr>
<td>3</td>
<td>DTL</td>
<td>15026807</td>
<td>CTL Dilution Tube</td>
<td>Room Temperature</td>
</tr>
<tr>
<td>4</td>
<td>DTE</td>
<td>15026766</td>
<td>CTE Dilution Tube</td>
<td>Room Temperature</td>
</tr>
<tr>
<td>5</td>
<td>DTA</td>
<td>15026805</td>
<td>CTA Dilution Tube</td>
<td>Room Temperature</td>
</tr>
</tbody>
</table>

96 Samples, Box 2 of 2

Store as specified
This box is shipped on dry ice. As soon as you receive it, store the components as specified.
Figure 21 TruSeq Stranded mRNA HT Sample Prep Kit, 96 Samples, (Box 2 of 2), part # 15032623

<table>
<thead>
<tr>
<th>Slot</th>
<th>Reagent</th>
<th>Part #</th>
<th>Description</th>
<th>Storage Temperature</th>
</tr>
</thead>
<tbody>
<tr>
<td>1–2</td>
<td>BBB</td>
<td>15026779</td>
<td>Bead Binding Buffer</td>
<td>2°C to 8°C</td>
</tr>
<tr>
<td>3–4</td>
<td>ELB</td>
<td>15026780</td>
<td>Elution Buffer</td>
<td>2°C to 8°C</td>
</tr>
<tr>
<td>5–6</td>
<td>BWB</td>
<td>15012925</td>
<td>Bead Washing Buffer</td>
<td>2°C to 8°C</td>
</tr>
<tr>
<td>7–8</td>
<td>FPF</td>
<td>15032067</td>
<td>Fragment, Prime, Finish Mix</td>
<td>-15°C to -25°C</td>
</tr>
</tbody>
</table>
Consumables and Equipment

Check to make sure that you have all of the necessary user-supplied consumables and equipment before starting the TruSeq Stranded mRNA Sample Preparation protocol. The requirement for some supplies is dependent upon the protocol performed (LS or HS) and these items are specified in separate tables.

<table>
<thead>
<tr>
<th>Consumable</th>
<th>Supplier</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.5 ml RNase/DNase-free non-sticky tubes</td>
<td>Life Technologies, part # AM12450</td>
</tr>
<tr>
<td>10 μl barrier pipette tips</td>
<td>General lab supplier</td>
</tr>
<tr>
<td>10 μl multichannel pipettes</td>
<td>General lab supplier</td>
</tr>
<tr>
<td>10 μl single channel pipettes</td>
<td>General lab supplier</td>
</tr>
<tr>
<td>1000 μl barrier pipette tips</td>
<td>General lab supplier</td>
</tr>
<tr>
<td>1000 μl multichannel pipettes</td>
<td>General lab supplier</td>
</tr>
<tr>
<td>1000 μl single channel pipettes</td>
<td>General lab supplier</td>
</tr>
<tr>
<td>200 μl barrier pipette tips</td>
<td>General lab supplier</td>
</tr>
<tr>
<td>200 μl multichannel pipettes</td>
<td>General lab supplier</td>
</tr>
<tr>
<td>200 μl single channel pipettes</td>
<td>General lab supplier</td>
</tr>
<tr>
<td>96-well storage plates, round well, 0.8 ml (“MIDI” plate)</td>
<td>Fisher Scientific, part # AB-0859</td>
</tr>
<tr>
<td>96-well 2 ml deep well plates (Optional - to aliquot reagents)</td>
<td>Thomson Instrument Company, part # 951652</td>
</tr>
<tr>
<td>Agencourt AMPure XP 60 ml kit</td>
<td>Beckman Coulter Genomics, part # A63881</td>
</tr>
<tr>
<td>Consumable</td>
<td>Supplier</td>
</tr>
<tr>
<td>---</td>
<td>-------------------------------</td>
</tr>
<tr>
<td>Certified low-range ultra-agarose (Optional - to determine input RNA integrity)</td>
<td>Bio-Rad, part # 161-3107</td>
</tr>
<tr>
<td>Ethanol 200 proof (absolute) for molecular biology (500 ml)</td>
<td>Sigma-Aldrich, part # E7023</td>
</tr>
<tr>
<td>Microseal ‘B’ adhesive seals</td>
<td>Bio-Rad, part # MSB-1001</td>
</tr>
<tr>
<td>Nuclease-free ultra pure water</td>
<td>General lab supplier</td>
</tr>
<tr>
<td>RNaseZap (to decontaminate surfaces)</td>
<td>General lab supplier</td>
</tr>
<tr>
<td>RNase/DNase-free eight-tube strips and caps</td>
<td>General lab supplier</td>
</tr>
<tr>
<td>RNase/DNase-free multichannel reagent reservoirs, disposable</td>
<td>VWR, part # 89094-658</td>
</tr>
<tr>
<td>SuperScript II Reverse Transcriptase</td>
<td>Invitrogen, part # 18064-014</td>
</tr>
<tr>
<td>Tris-HCl 10 mM, pH8.5</td>
<td>General lab supplier</td>
</tr>
<tr>
<td>Tween 20</td>
<td>Sigma, part # P7949</td>
</tr>
</tbody>
</table>

Table 13 User-Supplied Consumables - Additional Items for LS Processing

<table>
<thead>
<tr>
<th>Consumable</th>
<th>Supplier</th>
</tr>
</thead>
<tbody>
<tr>
<td>96-well 0.3 ml PCR plates</td>
<td>General lab supplier</td>
</tr>
</tbody>
</table>

Table 14 User-Supplied Consumables - Additional Items for HS Processing

<table>
<thead>
<tr>
<th>Consumable</th>
<th>Supplier</th>
</tr>
</thead>
<tbody>
<tr>
<td>Microseal 96-well PCR plates (“HSP” plate)</td>
<td>Bio-Rad, part # HSP-9601</td>
</tr>
<tr>
<td>Microseal ‘A’ film</td>
<td>Bio-Rad, part # MSA-5001</td>
</tr>
</tbody>
</table>
Table 15
User-Supplied Equipment

<table>
<thead>
<tr>
<th>Equipment</th>
<th>Supplier</th>
</tr>
</thead>
<tbody>
<tr>
<td>96-well thermal cycler (with heated lid)</td>
<td>General lab supplier</td>
</tr>
<tr>
<td>2100 Bioanalyzer Desktop System</td>
<td>Agilent, part # G2940CA</td>
</tr>
<tr>
<td>Agilent DNA 1000 Kit</td>
<td>Agilent, part # 5067-1504</td>
</tr>
<tr>
<td>Magnetic stand-96</td>
<td>Life Technologies, part # AM10027</td>
</tr>
<tr>
<td>Microplate centrifuge</td>
<td>General lab supplier</td>
</tr>
<tr>
<td>Vortexer</td>
<td>General lab supplier</td>
</tr>
</tbody>
</table>

Table 16
User-Supplied Equipment - Additional Items for HS Processing

<table>
<thead>
<tr>
<th>Consumable</th>
<th>Supplier</th>
</tr>
</thead>
<tbody>
<tr>
<td>High-Speed Microplate Shaker</td>
<td>VWR, catalog #</td>
</tr>
<tr>
<td></td>
<td>• 13500-890 (110 V/120 V) or</td>
</tr>
<tr>
<td></td>
<td>• 14216-214 (230 V)</td>
</tr>
<tr>
<td>MIDl plate insert for heating system</td>
<td>Illumina, catalog #</td>
</tr>
<tr>
<td>Note: Two inserts are recommended to support successive heating procedures.</td>
<td>BD-60-601</td>
</tr>
<tr>
<td>Stroboscope</td>
<td>General lab supplier</td>
</tr>
<tr>
<td>One of the following: Note: Two systems are recommended to support successive heating procedures.</td>
<td></td>
</tr>
<tr>
<td>• SciGene TruTemp Heating System</td>
<td>• Illumina, catalog #</td>
</tr>
<tr>
<td></td>
<td>• SC-60-503 (115 V) or</td>
</tr>
<tr>
<td></td>
<td>• SC-60-504 (220 V)</td>
</tr>
<tr>
<td></td>
<td>• SciGene, catalog #</td>
</tr>
<tr>
<td></td>
<td>• 1057-30-0 (115 V) or</td>
</tr>
<tr>
<td></td>
<td>• 1057-30-2 (230 V)</td>
</tr>
</tbody>
</table>
Indexed Adapter Sequences

This section details the indexed adapter sequences.

TruSeq Stranded mRNA LT Sample Prep Kit Indexed Adapter Sequences

The TruSeq Stranded mRNA LT Sample Prep Kit contains the following indexed adapter sequences.

NOTE

- The index numbering is not contiguous. There is no Index 17, 24, or 26.
- The base in parentheses () indicates the base for the seventh cycle and is not considered as part of the index sequence. Record the index in the sample sheet as only six bases. For indices 13 and above, the seventh base (in parentheses) might not be A, which is seen in the seventh cycle of the index read.
- For more information on the number of cycles used to sequence the index read, reference your instrument user guide.
Table 17 TruSeq Stranded mRNA LT Sample Prep Kit Set A Indexed Adapter Sequences

<table>
<thead>
<tr>
<th>Adapter</th>
<th>Sequence</th>
<th>Adapter</th>
<th>Sequence</th>
</tr>
</thead>
<tbody>
<tr>
<td>AR002</td>
<td>CGATGT(A)</td>
<td>AR013</td>
<td>AGTCAA(C)</td>
</tr>
<tr>
<td>AR004</td>
<td>TGACCA(A)</td>
<td>AR014</td>
<td>AGTTCC(G)</td>
</tr>
<tr>
<td>AR005</td>
<td>ACAGTG(A)</td>
<td>AR015</td>
<td>ATGTCA(G)</td>
</tr>
<tr>
<td>AR006</td>
<td>GCCAAT(A)</td>
<td>AR016</td>
<td>CCGTCC(C)</td>
</tr>
<tr>
<td>AR007</td>
<td>CAGATC(A)</td>
<td>AR018</td>
<td>GTCCGC(A)</td>
</tr>
<tr>
<td>AR012</td>
<td>CTTGTA(A)</td>
<td>AR019</td>
<td>GTGAAA(C)</td>
</tr>
</tbody>
</table>

Table 18 TruSeq Stranded mRNA LT Sample Prep Kit Set B Indexed Adapter Sequences

<table>
<thead>
<tr>
<th>Adapter</th>
<th>Sequence</th>
<th>Adapter</th>
<th>Sequence</th>
</tr>
</thead>
<tbody>
<tr>
<td>AR001</td>
<td>ATCACG(A)</td>
<td>AR020</td>
<td>GTGGCC(T)</td>
</tr>
<tr>
<td>AR003</td>
<td>TTAGGC(A)</td>
<td>AR021</td>
<td>GTTTTCG(G)</td>
</tr>
<tr>
<td>AR008</td>
<td>ACTTGA(A)</td>
<td>AR022</td>
<td>CGTACG(T)</td>
</tr>
<tr>
<td>AR009</td>
<td>GATCAG(A)</td>
<td>AR023</td>
<td>GAGTGG(A)</td>
</tr>
<tr>
<td>AR010</td>
<td>TAGCTT(A)</td>
<td>AR025</td>
<td>ACTGAT(A)</td>
</tr>
<tr>
<td>AR011</td>
<td>GGCTAC(A)</td>
<td>AR027</td>
<td>ATTCC(T)</td>
</tr>
</tbody>
</table>

TruSeq Stranded mRNA HT Sample Prep Kit Indexed Adapter Sequences

The RAP in the TruSeq Stranded mRNA HT Sample Prep Kit contains the following indexed adapter sequences:

NOTE
The Index recorded in the sample sheet is the full 8 bases and 8 bases are sequenced per indexed read.
Table 19 TruSeq Stranded mRNA HT Sample Prep Kit Indexed Adapter 1 Sequences

<table>
<thead>
<tr>
<th>Adapter</th>
<th>Sequence</th>
<th>Adapter</th>
<th>Sequence</th>
</tr>
</thead>
<tbody>
<tr>
<td>D701</td>
<td>ATTACTCG</td>
<td>D707</td>
<td>CTGAAGCT</td>
</tr>
<tr>
<td>D702</td>
<td>TCCGGAGA</td>
<td>D708</td>
<td>TAATGCGC</td>
</tr>
<tr>
<td>D703</td>
<td>CGCTCATT</td>
<td>D709</td>
<td>CCGCTATG</td>
</tr>
<tr>
<td>D704</td>
<td>GAGATTCC</td>
<td>D710</td>
<td>TCCGCGAA</td>
</tr>
<tr>
<td>D705</td>
<td>ATTCAGAA</td>
<td>D711</td>
<td>TCTCGCGC</td>
</tr>
<tr>
<td>D706</td>
<td>GAATTCGT</td>
<td>D712</td>
<td>AGCGATAG</td>
</tr>
</tbody>
</table>

Table 20 TruSeq Stranded mRNA HT Sample Prep Kit Indexed Adapter 2 Sequences

<table>
<thead>
<tr>
<th>Adapter</th>
<th>Sequence</th>
<th>Adapter</th>
<th>Sequence</th>
</tr>
</thead>
<tbody>
<tr>
<td>D501</td>
<td>TATAGCCT</td>
<td>D505</td>
<td>AGGCGGAAG</td>
</tr>
<tr>
<td>D502</td>
<td>ATAGAGGC</td>
<td>D506</td>
<td>TAATCTTA</td>
</tr>
<tr>
<td>D503</td>
<td>CCTATCCT</td>
<td>D507</td>
<td>CAGGACGT</td>
</tr>
<tr>
<td>D504</td>
<td>GGCTCTGA</td>
<td>D508</td>
<td>GTACTGAC</td>
</tr>
</tbody>
</table>
Alternate Fragmentation Protocols

Introduction .. 108
Modify RNA Fragmentation Time .. 109
Fragmentation of the nucleic acids is required for optimal library preparation, clustering, and sequencing. The TruSeq Stranded mRNA Sample Preparation fragmentation protocol for transcriptome analysis is performed on the RNA after mRNA purification using elevated temperatures. The fragmentation results in libraries with inserts ranging from 120 bp to 200 bp in size, with a median size of 150 bp. The TruSeq Stranded mRNA Sample Preparation fragmentation protocol ensures the best coverage of the transcriptome with efficient library production.

Illumina recognizes that some customers have different purposes for their sequencing experiments. The need for larger inserts is greater than the need for the best coverage for applications such as splice variant analysis studies. Two separate options are provided for varying the insert size of your library:

- Modify the fragmentation time
- Shear the sample after the synthesis of the ds cDNA.
Modify RNA Fragmentation Time

To modify the fragmentation of the RNA to allow for longer RNA fragments, the time of fragmentation can be shortened. This can be accomplished during the Purify and Fragment mRNA procedures by modifying the thermal cycler Elution 2 - Frag - Prime program: 94°C for X minutes followed by a 4°C hold for the thermal cycler. Determine X based on the length of the desired RNA. A range of suggested times and sizes is described in Table 21.

<table>
<thead>
<tr>
<th>Time at 94 °C (minutes)</th>
<th>Range of Insert Lengtha (bp)</th>
<th>Median Insert Lengtha (bp)</th>
<th>Average Final Library Size (Bioanalyzer bp)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b</td>
<td>130–350</td>
<td>200</td>
<td>467</td>
</tr>
<tr>
<td>1</td>
<td>130–310</td>
<td>190</td>
<td>439</td>
</tr>
<tr>
<td>2</td>
<td>130–290</td>
<td>185</td>
<td>410</td>
</tr>
<tr>
<td>3</td>
<td>125–250</td>
<td>165</td>
<td>366</td>
</tr>
<tr>
<td>4</td>
<td>120–225</td>
<td>160</td>
<td>326</td>
</tr>
<tr>
<td>8</td>
<td>120–210</td>
<td>155</td>
<td>309</td>
</tr>
<tr>
<td>12</td>
<td>115–180</td>
<td>140</td>
<td>272</td>
</tr>
</tbody>
</table>

a. Insert length determined after clustering and sequencing with a paired-end sequencing run.
b. Skip the Incubate RFP procedures (fragmentation) for samples requiring 0 minutes fragmentation time. Instead, place the sealed plate on the pre-heated thermal cycler. Close the lid and incubate the plate at 80°C for 2 minutes to elute the primed mRNA from the RNA Purification Beads. Then, immediately place the plate on the magnetic stand and proceed to the Synthesize First Strand cDNA process.
Figure 22 Shortened Fragmentation Time Results

NOTE
The discrepancy between the reported insert size using the Agilent Bioanalyzer and the insert size determined after clustering and sequencing with a paired-end sequencing run is due to the bias towards clustering smaller fragments. To target a specific fragment size, a gel size selection step is required after adapter ligation.
Index

A
Acronyms 89
Add ATL 29, 66
Add LIG 33, 70
Add SMM 25, 62
Add STL 35, 72
ALP 24, 61
Amp PCR 40, 78
AMPure XP Beads 24, 32, 38, 61, 69, 76
ATL 28, 65

B
BBB 16, 52
Best Practices 9
BWB 16, 52

C
CAP 31, 68
CCP 61
cDNA synthesis 15, 51
CDP (cDNA Plate) 21, 58
Clean Up ALP 35, 72-73
Clean Up PCR 40, 79
cluster generation 2, 46, 85
CPP 76
CTA 28, 65
CTE 24, 61
CTL 31, 68
customer support 113

D
DCT 44, 83
documentation 113
ds cDNA 24, 61

E
ELB 16, 52
Elution 2 - Frag - Prime 20, 57, 109

experienced user card (EUC) 10

F
first strand cDNA 2
FPF 16, 52
fragment 2
fragmentation time 108
FSA 21, 58

H
help, technical 113
High Sample (HS) 3
HSP 3

I
IEM 10
IMP 61
in-line control DNA 7
Incubate 1 ALP 30, 67
Incubate 1 CDP 23, 60
Incubate 1 RBP 18, 54
Incubate 2 ALP 35, 72
Incubate 2 CDP 26, 63
Incubate 2 RBP 19, 55
indexed adapter 2
indexed adapter 103-104

L
lab tracking form (LTF) 10
LIG 31, 68
Low Sample (LS) 3

M
Make CDP 22, 59
Make DCT 45, 84
Make PCR 40, 78
Make PDP vii, 46, 84
Index

Make RBP 18, 54
Make RFP 20, 56
micro plate shaker 3
microheating system 3
MIDI 3
mRNA 2
mRNA Denaturation 18, 54

P
PCR 2, 31, 68
PDP 44, 83
PMM 38, 76
poly-T magnetic beads 2, 15, 51
polyA 2, 15, 51
pooled sample volumes 46, 85
pooling guidelines 10
PPC 38, 76
Purify CDP 26, 63

Q
quality control 42, 81
quantify libraries 42, 81

R
RAP 31, 68
RBP 16, 53
Reagent Reservoirs 17, 21, 24, 28, 32, 39, 53, 58, 61, 65, 69, 77
RFB 53
RNA Adapter Indices 31, 68
RPB 16, 53
RSB 16, 24, 28, 31, 38, 52, 61, 65, 68, 76

S
SAV 7-8
second strand cDNA 2
SMM 24, 61
STL 31, 68
stranded mRNA 2
strip tubes and caps 17, 21, 24, 28, 32, 38, 53, 58, 61, 65, 69, 77
SuperScript II 21, 58

T
technical assistance 113
thermal cycler 3
Technical Assistance

For technical assistance, contact Illumina Technical Support.

Table 23 Illumina General Contact Information

<table>
<thead>
<tr>
<th>Illumina Website</th>
<th>www.illumina.com</th>
</tr>
</thead>
<tbody>
<tr>
<td>Email</td>
<td>techsupport@illumina.com</td>
</tr>
</tbody>
</table>

Table 24 Illumina Customer Support Telephone Numbers

<table>
<thead>
<tr>
<th>Region</th>
<th>Contact Number</th>
<th>Region</th>
<th>Contact Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>North America</td>
<td>1.800.809.4566</td>
<td>Italy</td>
<td>800.874909</td>
</tr>
<tr>
<td>Austria</td>
<td>0800.296575</td>
<td>Netherlands</td>
<td>0800.0223859</td>
</tr>
<tr>
<td>Belgium</td>
<td>0800.81102</td>
<td>Norway</td>
<td>800.16836</td>
</tr>
<tr>
<td>Denmark</td>
<td>80882346</td>
<td>Spain</td>
<td>900.812168</td>
</tr>
<tr>
<td>Finland</td>
<td>0800.918363</td>
<td>Sweden</td>
<td>020790181</td>
</tr>
<tr>
<td>France</td>
<td>0800.911850</td>
<td>Switzerland</td>
<td>0800.563118</td>
</tr>
<tr>
<td>Germany</td>
<td>0800.180.8994</td>
<td>United Kingdom</td>
<td>0800.917.0041</td>
</tr>
<tr>
<td>Ireland</td>
<td>1.800.812949</td>
<td>Other countries</td>
<td>+44.1799.534000</td>
</tr>
</tbody>
</table>

MSDSs

Material safety data sheets (MSDSs) are available on the Illumina website at www.illumina.com/msds.

Product Documentation

Product documentation in PDF is available for download from the Illumina website. Go to www.illumina.com/support, select a product, then click Documentation & Literature.